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Summary: The problem of an inverse analysis occurs in many engineering tasks. 
The task itself has several different forms and can be solved by a variety of 
methods. In this paper, we present a multi-objective optimization methodology to 
tackle the identification problem. Practical aspects will be shown on a microplane 
material model calibration, where parameters of highly non-linear material 
model are searched. 
 

1. Introduction 
Concrete is one of the most frequently used materials in Civil Engineering. Nevertheless, 

as a highly heterogeneous system, it shows very complex non-linear behavior, which is 
extremely difficult to describe by a sound constitutive law. As a consequence, a numerical 
simulation of complex concrete structures still remains a very challenging and demanding 
topic in engineering computational modeling.  

One of the most promising approaches to modeling of concrete behavior is based on the 
microplane concept [1]. When applied to concrete, it leads to a fully three-dimensional 
material law that incorporates tensional and compressive softening, damage of the material, 
supports different combinations of loading, unloading and cyclic loading along with the 
development of damage-induced anisotropy of the material. As a result, this material model is 
fully capable of predicting the behavior of real-world concrete structures once provided with 
proper input data [2]. The major disadvantages of this model are, however, a large number of 
phenomenological material parameters and a high computational cost associated with struc-
tural analysis even in a parallel environment. Although the authors of the model proposed 
a heuristic calibration procedure, it is based on the trial-and-error method and provides only 
a crude guide for the determination of the selected material parameters. 

 This year, a procedure based on artificial neural networks (ANN's) [3] for the microplane 
parameter identification that is able to identify reliably all microplane parameters was 
developed. In particular, an artificial neural network was used to estimate required 
parameters. As the training procedure, the genetic algorithm-based method was used. 

However, the drawback of this methodology is a high computational cost of the 
identification algorithm. A suite of 30 uniaxial compression tests consumes approximately 25 
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days on a single processor PC with the Pentium IV 3400 MHz processor and 3 GB RAM. If 
we run tests in parallel on 7 computers, the needed time is less than 4 days. The hydrostatic 
and triaxial compression tests are less demanding, when running in parallel on 7 computers, 
the required time is less than one day for each test. 

In this contribution, the problem is solved by implementing a parallel multi-objective 
procedure. The numerical analysis is implemented using the OOFEM - free finite element 
code with object oriented architecture [4]. The optimization procedure utilizes the Global 
parallel model [5]. More specifically, the program is divided into an optimization and an 
analysis part and in this way it is implemented in the cluster of PCs. As an optimization 
algorithm, the method called SADE [6] is used. Management of several objectives is utilized 
by the Average Ranking procedure [7]. As objectives, errors among experimental and 
computed stress-strain curves on a uniaxial compression test are used. 

 

2. Forward mode of an inverse analysis 
The forward mode of an inverse analysis can be formulated based on the existence of an 

experiment E, which, physically or virtually, connects the known inputs (parameters) XE
  to 

the desired outputs (measurements) YE. Formally, this can be written as 

 
 YE = E(XE) . (1) 
 
Then, the problem of an inverse analysis is defined as a search for unknown inputs XE

 from 
the known outputs YE, i.e. inversely to the experiment E. In common engineering 
applications, the experiment E is usually simulated by some virtual model M. Often, the 
model is a program based on numerical methods such as the finite element method. Here, this 
work assumes that the model M is sufficiently precise to replace the experiment E, and thus, 
we can put 

 
 E ≡ M . (2) 
 

This automatically results to 
 
 YE = M(XE) . (3) 
 

This step is important from the economy point of view, where the cost of the evaluation of 
the model M is assumed to be by an order of magnitude smaller than the cost of the physical 
experiment E. 

Based on the above-mentioned statements, the forward (classical) mode/direction of an 
inverse analysis is defined as a minimization of an error function of a difference between the 
outputs of the model and the output of the experiment, i.e. 

 
 min f(X) = ||YE - M(X)|| . (4) 
 
A solution X* comes with the minimum of this function, where f(X*) = 0 as well as X* ≡ 

XE.  
The problem (4) has been classically solved by gradient-based optimization methods. 

Nowadays, the model M is usually hidden in a program which is limited by license 
conditions, compact code etc. and therefore, the knowledge of derivatives is missing even if 



the function is differentiable. Hence, the soft-computing methods can be successfully applied 
here. Methods like the simulated annealing method [8,9] with one solution in time or 
evolutionary algorithms [10,11] with a “population” of solutions are usually used.  

 
The main advantage of this approach is that the forward mode is general in all possible 

aspects and is able to find an appropriate solution if such exists. This statement is confirmed 
with special cases like  
 a) A problem of a same value of outputs (Y) for different inputs (X), i.e. existence of 
several global optima. This case leads to a multi-modal optimization [12] but is solvable by an 
appropriate modification of an optimization algorithm.  
 b) There are different outputs (Y) for one input (X). This is the case of stochastic and 
probability calculations as well as experiments burdened with a noise or an experimental 
error. This obstacle can be tackled e.g. by introduction of stochastic parameters for outputs. 

c) There is more than one experiment for one material.  
 
The novelty within this contribution is the solution of the c) statement above which utilizes 
a multi-objective optimization algorithm, see Section 3. 
 

The biggest disadvantage of the forward mode is the need for a huge number of error 
function evaluations. This problem can be managed by parallel decomposition and parallel 
implementation. The parallel decomposition is based on an idea of the so-called implicit 
parallelism, i.e. the independence of any two solutions X. This is utilized by a global parallel 
model [5], where the main (master, root) processor/computer controls the optimization 
process while the slave processors compute the expensive evaluations of the model M. 
Thanks to independency of solutions, nearly linear speed-up is reached until a high number of 
processors.  
 

3. Optimization algorithm 
To obtain more reliable results, the applicability of the global optimization algorithm for 

the parameter identification problem is examined in the present work. Particularly, the 
algorithm SADE developed at FCE, CTU in Prague, is used. In this section, each of the 
steps of the introduced algorithm is described in more detail. For further information, we 
refer an interested reader to work [6] or to Internet page [13].  The final algorithm has the 
following form: 

void SADE ( void ) 

{ 
FIRST_GENERATION (); 
while ( to_continue() ) 
{ 

MUTATE (); 
LOCAL_MUTATE (); 
CROSS (); 
EVALUATE_GENERATION ();  
SELECT () ; 

} 
} 
 



Note that in the following text, an attention is paid to constants the algorithm is working with 
since they have a cardinal impact on the algorithm performance. It should be emphasized that 
their optimal setting is unfortunately problem-dependent and presents additional non-trivial 
task that must be dealt with. 
 

3.1 FIRST_GENERATION 
In this function, called at the beginning of the process, the population of individuals, or 

vectors, whose coordinates are random numbers within given margins, is generated. There is 
only a single constant in this function that defines how large population of the individuals is 
to be generated. Based on some test problems, it was concluded that it is convenient to take 
this number linearly dependent on the number of variables of a solved function. In particular, to 
get the size of the population, the parameter pool_rate is used to multiply the number of 
optimized variables. An essential property of this parameter is the ability to slow down the 
convergence process, which prevents the algorithm to fall into a local extreme. 
 

3.2 MUTATE 
Within the function MUTATE, a certain number of new individuals is created by mutation of 

the current population. The procedure is as follows: an individual 'A' is randomly chosen 
from the population, further a new individual 'B' is created with all coordinates as 
random numbers within given margins. A new individual, which is to be added to the 
population, is created by translation of the vector 'A' by a random fraction of the 
distance 'AB' in the direction of the vector 'B'. For such a form of the mutation operator, 
a new constant describing the number of individuals to be created by this operator is 
introduced. This constant, called radiation, should range from 0 to 30% of the number 
of individuals at the beginning of the cycle. Often it is chosen to be equal to 10%. The bigger 
the constant is, the larger scatter of individuals in the population occurs and the convergence 
slows down. Attention must be paid to the size of this parameter, because for some values the 
algorithm failed to converge at all. 
 

3.3 LOCAL_MUTATE 
The goal of this operator is to increase algorithm's performance for problems where 

a solution with a high precision is sought. It again introduces a certain number of new 
individuals in the population by translating all coordinates of a randomly chosen vector from 
the population by a random small distance. The translation is chosen for each coordinate 
separately as the fraction of the range for the given variable with the fraction randomly chosen 
from the interval -0.0025 to 0.0025. 

As in the case of the previously described operator MUTATE, it is again necessary to 
define the number of individuals to be created by local mutation. The constant called 
localradiation defines this number as the percentage of the total number of individuals in the 
population at the beginning of the cycle. The constant is set within the range 0 to 30 %, 
typically 10%. 
 

3.4  CROSS 
This operator creates new individuals so that, at the end of one generation, their total 

number is twice the number of individuals at the beginning of the cycle. The new individual is 



created on the principle of differential crossing. Three individuals A, B, C are randomly chosen 
from the population. New individual D is created according to the following relation, 

D = A + cross_rate • (B - C). (5) 

The parameter cross_rate has the largest influence on the convergence of the al-
gorithm. Its value is usually taken from the range 0.1 to 0.5. The bigger is its value, the 
slower is convergence of the algorithm. 
 

3.5 EVALUATE_GENERATION 
The function EVALUATE_GENERATION evaluates all new individuals. Firstly, it is 

necessary to define the manner how to treat the individuals (vectors), which fall outside the 
user-defined bounds. If the optimized function is defined beyond these margins, it is 
sometimes advantageous not to penalize these individuals. Such behavior enables to find new 
solutions if the margins are not well-known in advance. In the opposite case, where the 
solution outside the margins is not feasible, a suitable form of penalization should be used. 
The SADE algorithm uses in this case the so-called 'boundary return', which means that the 
coordinate beyond the margins is replaced with the boundary value. 
 

3.6 SELECT 
This operator reduces the number of individuals to one half, i.e. the same number as it was at 

the very beginning of the cycle. This is done on the basis of natural selection; in particular, the 
inverse tournament selection is performed: from two randomly selected individuals the worse 
is disqualified from the population. This selection is random and no additional constant is 
needed. 
 

3.7 Parameters settings 
As a whole, only four constants are defined in the SADE algorithm. For the reported 

optimization problem, these parameters were set as follows, 
 
pool_rate = 2 
radiation = 2% 
local_radiation = 2% 
cross_rate = 0.5 

 

3.8 Multi-objectivization 
Management of several objectives is utilized by the Average Ranking (AR) procedure [7]. 

The advantage of the AR is that it can be applied to any population-based optimization method. 
As proposed by authors in [7]: “The separate fitnesses of every solution are extracted into a list 
of fitness values for each objective. These lists are then individually sorted into order of fitness, 
resulting in a set of different ranking positions for every solution for each objective. The 
average rank of each solution is then calculated, with this value allowing the solutions to be 
sorted into order of best average rank. Thus, the higher an average rank a solution has, the 
greater its chance of producing more offspring. Since all objective fitnesses are treated 



separately, this method is range-independent”. Moreover, the AR method is known to perform 
well for correlated objective functions, which is exactly the case of our identification procedure, 
where the utopia point (all errors equal to zero) exists. 
 
 

Figure 1: The computational model of a uniaxial compression test a) at the start and b) at the 
end of loading. 

 
4. Identification of parameters for microplane material model 

In the adopted microplane M4 law, a certain type of concrete is described by eight 
parameters: Young's modulus E, Poisson's ratio v, and other six parameters (k1, k2, k3, k4, c3, 
c20), which do not have a simple physical interpretation, and therefore it is difficult to 
determine their values from experiments. The common practice for an experimenter is to 
employ a trial and error method to tune stress-strain diagrams by varying the model parameters 
[2, 14]. This is not trivial task because of highly non-linear behavior, however, several limits 
can be found in the literature for these parameters. In the current implementation, the 
appropriate boundaries were set to values shown in Table 1. 

Table 1: Bounds of microplane parameters 
 

E ∈ (20.0, 50.0) GPa 
v ∈ (0.1,0.3) 

k1 ∈ (0.001,0.00001) 

k2 ∈ (100.0,1000.0) 

k3 ∈ (5.0,15.0) 

k4 ∈ (30.0,200.0) 

c3 ∈ (3.0,5.0) 

c20 ∈ (0.2,5.0). 
 

  



 

5. Multi-objective formulation 
To define the problem more formally, the optimization goal is to find microplane parameters 

from the stress-strain diagram of a test specimen in a uniaxial compression, see Figures 1 and 3. 
In the case of a uniaxial compression test, the global response of a specimen represented by the 
stress-strain (σ-ε) diagram for the structure cannot be simply related to two-stage material 
response with an elastic-linear and non-linear (hardening and softening) part (see Figure 3). 
Nevertheless, we assume that it will be still possible to employ the two-stage approach, where 
the solution process will be divided into the optimization of elastic and non-linear parameters in 
the sequential way. Each step is described in detail in the rest of this section. Due to lack of 
experimental data, a reference simulation with parameters shown in Table 3 will be used to 
provide the target data. 
 

5.1 Identification of elastic parameters 
In the elastic range, Young’s modulus and Poisson’s ratio are determined using very short 

simulations describing only the elastic response of a specimen represented by the linear part 
of a stress-strain diagram. To identify both elastic parameters this information needs to be 
supplemented with both axial as well as lateral deformations. At this point, the error functions 
for the differences between reference and searched material can be found: 
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where i is the number of steps within elastic regime. This formulation enables to define two 
objective functions – F1 for axial and F2 for lateral case, respectively.  

The analysis presented in the elastic identification part is based on the statistics of 50 
independent multi-objective optimization processes, executed for both objective functions. 
The termination criteria were set to: first, the number of objective function evaluations 
exceeded 1000; second, the values of both objective functions smaller than a stopping 
precision 10-3 was found. A particular optimization process was marked as ’successful’, when 
the latter termination condition was met. Note that since the reference simulations instead of 
experimental data are used, the optimum for every objective function is equal to zero. Results 
of this study are summarized in Table 2 showing the minimum and maximum values found. 
Note that the success rate was equal to 92%. The sketchy history of one evaluation in two-
objective case is presented in Figure 2. 
 

Table 2: Results of elastic identification part 

Parameters E [Mpa] ν

Reference 32036 0,179

Found min 31806 0,177
Found max 32279 0,180  



 

5.2 Identification of non-linear parameters 
Once we have successfully determined Young’s modulus and Poisson’s ratio, we can 

continue towards the estimate of the k1 and c20 parameters (Other parameters cannot be 
reliably identified from the uniaxial compression test [3]). The k1 parameter is related to the 
peak coordinates of the stress-strain diagram. The c20 parameter then governs the slope of the 
diagram in the softening regime. In our particular case, the slope D is approximated as 
a secant determined from two distinct points – the peak and the end of the stress-strain 
diagram. This leads to the definition of the next two objective functions: 
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Figure 2: Evolution of errors among population of solutions during elastic identification part. 
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Figure 3: Comparison of load-deflection diagrams: lateral (left) and axial (right) 
measurements. 

Due to computational overheads (more than 14 hours of computation on 8 processors), only 
one solution is presented, see Table 3. The results show that the errors for the elastic 
parameters E and ν, and moreover, for parameter k1, are less than 1%, which is more than 
sufficient from the practical point of view. This is also documented by Figure 3, where no 
deviation of the reference and resulting curves is visible in the elastic range. The prediction of 
the parameter c20 shows similar precision, as is shown in Figure and Table 3. Note that the 
“relative error 1” stems for error according to the reference value, whereas the “relative 
error 2” stems for difference between parameters divided by the free range of the parameter, 
i.e. the difference between allowable maximum and minimum of the selected parameter. 

Table 3: Results of non-linear identification part 

Parameters E [Mpa] ν k1 k2 k3 k4 c3 c20

Found 32220,3 0,180276 0,000106 742,079 7,61354 181,207 4,8279 0,214178
Reference 32035,5 0,178759 0,000107 452,5 7,4167 48,417 4,4167 0,24

Rel. error 1 0,57% 0,84% 0,73% 39,02% 2,59% 73,28% 8,52% 12,06%
Rel. error 2 0,62% 0,76% 0,08% 32,18% 1,97% 78,11% 20,56% 0,54%  
 
7. Conclusions 

We have proposed a sound identification procedure for material parameters of the 
constitutive model for concrete. The most pertinent conclusions can be stated as follows: 

i) The sequential identification approach for the uniaxial compression test leads to 
a sufficient identification of four parameters. Each of two stages uses only a part of the test 
simulation, which leads to substantial computational time savings. 

ii) As the result of a multi-objective identification procedure, the errors in identified 
parameters do not accumulate. Therefore, the values were identified with higher accuracy 
then those achieved by neural network-based inverse analysis [3]. 



iii) The predictive outcome of the present study is the conclusion that the determination of 
all microplane model parameters needs more test cases rather than a sole uniaxial 
compression test, which is consistent with findings in [3]. 

Finally, the parallel solution appears to be an appropriate tool how to tackle with enormous 
computational demand of the microplane material model. Obtained nearly-linear speedup 
together with possibility to use much more processors promise new interesting results and 
potential applications of the presented method in the future. 
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