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Summary: Presented paper is concerned with the numerical modeling of quasi-
brittle materials such as concrete. Brancherie and Ibrahimbegovic are authors
of a simple model capable of describing the behavior of a structure until localized
failure. In this paper, we discuss the identification of the model parameters from re-
sults of the three-point bending test. This leads to an optimization problem, which is
solved by the stochastic algorithm based on an adaptive approximation of the objec-
tive function by the Radial Basis Function Network dynamically evolved by minima
located by a real-encoded genetic algorithm.

1 Introduction
Concrete is very frequently used material in the civil engineering. It could be considered
as a quasi-brittle material with very complex mechanical behavior. Brancherie and Ibrahimbe-
govic are authors of a relatively simple model capable of describing the behavior of a massive
structure until the point of localized failure. The model contains all the ingredients for taking
into account both the diffuse damage mechanism, which leads to the appearance of microcracks,
as well as the failure process characterized by the propagation of macrocracks. Perhaps the most
important advantage of the proposed model is the fact that all its parameters have a clear physi-
cal interpretation and can be straightforwardly visualized in terms of the shape of a stress-strain
diagram. In addition, influence of each parameter is dominant only for specific, easily recog-
nizable, stages of material behavior. This kind of a priori knowledge has a potential to greatly
simplify the model calibration and will be systematically used throughout the paper.

In this paper, we discuss the identification of the model parameters from experimental mea-
surements made on a structural level. Generally speaking, the complexity of the identifica-
tion procedure is determined by the choice of experimental setup. Solely from the identifi-
cation point of view, the simplest experiment to execute is the uniaxial tensile test. In this
case, the strain field stays mostly homogeneous during the whole procedure and the global re-
sponse represented by the load-displacement diagram is very similar to the stress-strain curve
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for one material point. The model parameters can be then directly determined from the shape
of the load-displacement curve. Such a uniform loading is, however, very difficult to impose
in a laboratory test, especially for quasi-brittle materials. Therefore, other tests are often used
in experimental practice.

The three-point bending test, in particular, is considered to be much simpler to perform
and its results are well-reproducible. Therefore, we focus on the identification procedure for
the proposed model parameters directly from results of the three-point bending test. Main
difficulty is in this case imposed by heterogeneity of the stress and the strain fields, which is
present since the very start of the experiment. The macro-scale measurements provide the load-
deflection curve that integrates data from different parts of the specimen experiencing different
regimes of (in)elastic behavior. For that reason, the possibility of a simple determination of
model parameters from load-deflection curve is lost and an advanced calibration procedure
needs to be applied.

To take advantage of the model specific structure, already mentioned above, the identifica-
tion procedure should be divided into three sequential stages discussed in detail in Section 3.
From the algorithmic point of view, the material calibration can then be understood as a sequen-
tial optimization problem. Such approach has two main advantages: first, solving three simpler
identification steps in a batch form is typically much more efficient then the full-scale problem;
second, it allows to use only a subset of simulations for initial stages of identification process.

The gradient-based methods are usually considered to be the most computationally efficient
optimization algorithms available and as such have been successfully used in a variety of iden-
tification problems, e.g. (9). For the current model, however, analytic determination of sensi-
tivities is fairly difficult, mainly due the history dependency of the model as well as complex
interaction of individual parameters. The accuracy of numerical approximation to the “exact”
sensitivities, on the other hand, is driven by the choice of pseudo-time step used in numer-
ical simulations. Clearly, to reduce the computational time, the pseudo-time step should be
used as large as possible. Therefore, the response-based objective function will not be smooth
and gradient-based methods are unlikely to be very successful.

As an alternative, techniques of soft-computing can be employed for optimization of com-
plex objective functions. For example, stochastic evolutionary algorithms have been success-
fully used for solution of identification problems on a level of material point (4) or on a level
of simple structures (10; 16). For the current case, however, complexity of the optimization
can be attributed rather to its non-smooth character than to the appearance of multiple optima;
the family of problems where evolutionary algorithms are the most successful methods. This
opens the way to more specialized tools, which deliver higher efficiency when compared to usu-
ally time-consuming evolutionary algorithms.

The approach adopted in the present work is based on an adaptive smoothing of the objec-
tive function by artificial neural networks (see, e.g., (20) for alternative ANN-based solutions
to identification problems). In particular, the approximated model is provided by the Radial
Basis Function Network, described in Section 4.2, dynamically evolved by minima located
by a real-encoded genetic algorithm, briefly reviewed in Section 4.1. The proposed sequential
numerical strategy is systematically verified in Section 5 with attention paid to a detailed as-
sessment of the proposed stochastic algorithm reliability. Final remarks and conclusions can be
found in Section 6.



2 A brief description of the identified model
In the present section, we give a brief description of the model on which the identification
procedure is based. As already mentioned, the proposed model is capable of taking into account
two different types of dissipation (e.g. see (11)):

• a bulk dissipation induced by the appearance of uniformly distributed microcracks. This
bulk dissipation is taken into account by the use of a classical continuum damage model;

• a surface dissipation induced by the development of macrocracks responsible for the col-
lapse of the structure. This phase is taken into account by the use of a strong disconti-
nuity model. The surface dissipation is taken into account by the introduction of a trac-
tion/displacement jump relation.

Therefore, two different models are involved in the constitutive description: the one associ-
ated with the bulk material and the one associated with the displacement discontinuity. Both are
built on the same scheme considering the thermodynamics of continuous media and interfaces.

The key points of the construction of each of the two models are summarized in Table 1
and Table 2.
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Table 1: Main ingredients of the continuum damage model
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Table 2: Main ingredients of the discrete damage model

For the discrete damage model, the isotropic softening law is chosen as:
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In Tables 1 and 2 the variables ˙̄γ, ˙̄̄γ1 and ˙̄̄γ2 denote Lagrange multipliers induced by the use
of the maximum dissipation principle. Moreover, ¯̄u denotes the displacement jump on the sur-
face of discontinuity. Finally, D and ¯̄Q correspond to the damaged compliance of the continuum
and discrete model, respectively.

Note that in a three-point bending, the simulated response is almost independent of the limit
tangential traction ¯̄σs. Therefore, its value was set to 0.1¯̄σf . With such simplification, there are
six independent material parameters to be identified:

• the elastic parameters: the Young modulus E and the Poisson ratio ν;

• the continuum damage parameters: the limit stress σ̄f and the hardening parameter K̄;

• the discrete damage parameters: the limit normal traction ¯̄σf and the softening parame-
ter ¯̄β.

The limits of realistic values for each parameter are shown in Table 3. Note that in our
identification methodology we do not suppose to have an expert capable of giving the initial
estimate of material parameters values, as in e.g. (9; 19). Therefore, the bounds on model
parameters were kept rather wide.

E ∈ (25, 50) GPa σ̄f ∈ (1, 5) MPa ¯̄σf ∈ (σ̄f +0.1, 2σ̄f ) MPa
ν ∈ (0.1, 0.4) K̄ ∈ (10, 10000) MPa ¯̄β ∈ (0.1¯̄σf , 10¯̄σf ) MPa/mm

Table 3: Limits for the model parameters.

3 Optimization problem formulation
In the case of a three-point bending test the global response of a specimen represented by the load-
deflection (L-u) diagram for the structure cannot be simply related to three-stage material re-
sponse with elastic, hardening and softening part (see Figure 1a). Nevertheless, we assume that
it will be still possible to employ the three-stage approach developed for the uniaxial tensile
experiment in (14). The solution process will be divided into the optimization of elastic, hard-
ening and softening parameters in the sequential way. Each step is described in detail in the rest
of this section.

Due to lack of experimental data, a reference simulation with parameters shown in Table 4
will be used to provide the target data.

E = 38.0 GPa K̄ = 1000.0 MPa ¯̄σf = 2.35 MPa
ν = 0.1 σ̄f = 2.2 MPa ¯̄β = 23.5 MPa/mm

Table 4: Parameter’s values for reference simulation.

3.1 Identification of elastic parameters

In the elastic range, Young’s modulus and Poisson’s ratio are determined using very short simu-
lations describing only the elastic response of a specimen represented by the linear part of load-
deflection diagram. To identify both elastic parameters this information needs to be supple-
mented with an additional measurement. In particular, we propose to include the specimen



0 0.05 0.1 0.15 0.2 0.25
Prescribed deflection (mm)

0

20

40

60

80

100

120

Lo
ad

 (N
/m

m
)

0 0.05 0.1 0.15 0.2 0.25
Prescribed displacement (mm)

0

0.05

0.1

0.15

0.2

Ex
pa

ns
io

n 
of

 sp
ec

im
en

 (m
m

)

(a) (b)

Figure 1: Three-point bending test: (a) Load-deflection diagram (b) Evolution of expansion
of specimen.

expansion ∆l defined as the relative horizontal displacements between the left and the right
edge of the specimen (as indicated by arrows in Figure 2). The reference expansion-deflection
curve is shown in Figure 1b.
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Figure 2: Displacements measured to evaluate the expansion ∆l of the specimen.

The objective function F1 applicable for the determination of elastic parameters can be
defined as follows:

F1 = (Lref(u) − L(u))2w1 + (∆lref (u) − ∆l(u))2w2 ; u = 0.01mm (2)

The quantities with index ref correspond to the values taken from the reference diagram. The cor-
responding value of weights w1 and w2 were calculated using 30 random simulations to nor-
malize the average value of each of summation terms in (2) to one.

3.2 Identification of hardening parameters

Once we have successfully determined Young’s modulus and Poisson’s ratio, we can continue
towards the estimate of the elastic limit stress σ̄f (representing a threshold of elastic behavior)
and the hardening parameter K̄. The limit stress will be related to the limit displacement ūf

at the end of the linear part of the load-deflection diagram. The hardening parameter K̄ will
then govern the slope of the diagram in the hardening regime. In our particular case, the slope
s̄ is approximated as a secant determined from two distinct points. There are two contradictory
requirements for that choice: first, the points should not be too close to ūf to ensure that numer-
ical errors due to pseudo-time discretization do not exceed the impact of K̄ parameter; second,



they should be close enough to ūf to ensure that the specimen does not enter the softening
regime. The particular choice adopted in this work is

s̄ = (L(ūf + 0.01mm) − L(ūf + 0.005mm))/0.005mm (3)

leading to the objective function in form

F2 = (ūf,ref − ūf)
2 w3 + (s̄ref − s̄)2 w4. (4)

To keep this optimization step efficient, the simulations should again be restricted to a lim-
ited loading range, where the limit displacement can be related to the value of ūf,ref from
the reference diagram. Note that during optimization process, there is no guarantee that σ̄f

will be exceeded when subjecting the specimen to the limit displacement. Such a solution is
penalized by setting the objective function value to 10 × N , where N = 2 is the problem di-
mension, see Figure 3a. Moreover, as documented by Figure 3b, the objective function is now
substantially noisy and hence more difficult to optimize.
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Figure 3: Objective function F2: (a) Whole domain (b) Detail close to optimum.

3.3 Identification of softening parameters

The last stage of identification involves the discrete damage parameters: the limit normal trac-
tion ¯̄σf and the softening parameter ¯̄β. Variable ¯̄σf represents a limit of hardening of material
and the appearance of a macroscopic crack. Determination of displacement ¯̄uf corresponding
to this event, however, is rather delicate. The most straightforward method is based on the com-
parison of the reference curve with a simulation for a very high value of ¯̄σf . The point where
these two curves start to deviate then defines the wanted value of ¯̄uf . A more reliable possibility
could be based on a local optical measurement in the vicinity of notch (3) or acoustic emission
techniques (2).

After the specimen enters the softening regime, the shape of diagram is fully governed
by the softening parameter ¯̄β. Therefore, its value can be fitted on the basis of the load corre-
sponding to the deflection for which the softening is sufficiently active. This leads to the last
objective function in the form

F3 = ( ¯̄uf,ref − ¯̄uf)
2 w5 + (Lref(u) − L(u))2 w6 ; u = 0.15mm. (5)

By analogy to the procedure described in the previous section, the penalization is applied
to the cases where the specimen does not reach the softening regime until the end of simulations.



4 Optimization method
The algorithm used for the optimization of objective functions F1, F2 and F3 is based on an ef-
ficient combination of an artificial neural network, namely the radial basis function network
(RBFN), and an evolutionary algorithm GRADE extended by the niching strategy CERAF.
The principle of the algorithm is the replacement of an objective function by a neural network
approximation and its subsequent optimization by an evolutionary algorithm. The approxima-
tion is constructed on a basis of interpolation of several points, where the values of objective
function were calculated exactly. The approximation is adaptively improved by new neurons
(points), provided e.g. by optima located on the previous approximation.

The main advantage of this methodology is an inexpensive evaluation of the approximation,
which is repeatedly used during stochastic optimization process. Computationally expensive
objective function is evaluated only when new neurons are added to the neural network.

4.1 Evolutionary algorithm GRADE extended by strategy CERAF

Evolutionary algorithms nowadays belong to the most popular optimization tools. Unlike
the traditional gradient optimization methods, evolutionary algorithms operate on a popula-
tion (a set of possible solutions), applying ’genetic’ operators (cross-over, mutation and selec-
tion). The principles of evolutionary algorithm were first proposed by Holland (8). Ever since,
the evolutionary algorithms have reached wide application domain, see e.g. books by Gold-
berg (5) and Michalewicz (17) for an extensive review. In this work, we employ a GRADE
algorithm (GRadient-based Atavistic Differential Evolution) developed in (10). The algorith-
mic scheme of the method is briefly summarized below.

The first step is to generate a starting generation of chromosomes by choosing random val-
ues of all state variables. The size of the population is in our case set to ten times the number
of optimized variables. After the initiation stage the following steps are repeated until a termi-
nation condition is reached:

1. MUTATION, which creates a new solution x using the operation

x = y + k(y − z) , (6)

where y is a solution from actual population, z is a randomly created solution and k
is a real number from given bounds. Ten percents of solutions in a new population are
created by this operator.

2. CROSS-OVER, which creates a new solution x according to

x = opt(y, z) + cs(y − z) , (7)

where opt(y, z) denotes a better solution from two randomly chosen vectors y and z, c
is a real random number with a uniform distribution on the interval [0;2] and s changes
the direction of the descent (y − z) favor better solution from vectors y and z. This
operator creates 90% of individuals in a new population.

3. EVALUATION computes the objective function value for each new solution.

4. TOURNAMENT SELECTION, where the worst individual from two randomly selected
solutions is deleted. This operator is repeated until the number of solution is the same
as at the beginning of the cycle.



The basic version of GRADE is complemented with CERAF strategy (7) in order to in-
crease the algorithm robustness when dealing with multi-modal problems. The CERAF strat-
egy works on the principle of multi-start strategy supported with memory. If the best value
found by a stochastic algorithm does not change for more than a prescribed value during
a certain number of generations, CERAF store the optimal point in memory and surrounds
it by a “radioactive” zone defined as n-dimensional ellipsoid with each diameter equal to 50%
of the size of searched domain. If a new solution is located inside the ’radioactive” zone, it is
replaced with a random one outside the zone. If this solution was created by the CROSS-OVER
operator, the size of the ’radioactive” zone is decreased by 0.5% of the actual size. During
the computations presented herein, the new local extreme was marked when the best value
found had not changed for more than the stopping precision (defined as a property of objec-
tive function) during 100 generations. An interested reader is referred to (7) for more detailed
description of CERAF.

4.2 Radial Basis Function Network

Artificial neural networks (ANNs) were initially developed to simulate the processes in a human
brain and later generalized for many problems like pattern recognition, different approximations
and predictions, control of systems, etc (21; 20). In this work, they will be used “only” as gen-
eral approximation tools. The particular implementation is based on the idea of radial basis
function networks as proposed e.g. in (18; 12).

Neural network replace the objective functionF (x) by approximation F̃ (x) defined as a sum
of radial basis functions multiplied by synaptic weights:

F (x) ≈ F̃ (x) =
N∑

i=1

bi(x)wi , (8)

where x is a vector of unknowns, bi(x) is a basis function associated with i-th neuron, wi is
a weight of the i-th neuron andN is the total number of neurons creating the network. The basis
function bi has the following form

bi(x) = e−‖x−ci‖2/r , (9)

where ci is a vector of the center coordinates for the i-th basis function and r is a normalizing
factor set to

r =
dmax

D
√
DN

, (10)

where dmax is the maximal distance within the domain and D is the number of dimensions.
Synaptic weights are computed from the condition

F (ci) = F̃ (ci), (11)

imposing the equality of the approximation and objective function values yi in all neurons. This
leads to a minimization problem in the form:

min
N∑

i=1

[(yi −
N∑

j=1

bj(ci)wj)
2 + λiw

2

i ] . (12)



where λi is a regularization factor set to 10−7. The solution of (12) leads to a system of linear
equations determining the values of synaptic weights w.

At this point, the RBFN approximation of the objective function is created and the above-
mentioned evolutionary algorithm GRADE is used to locate the ’approximate’ global optima.
In the next step, to improve the quality of approximation, three new points are added into
the neural network: the optimum of previous approximation, a random point and another point
in the descent direction defined by optima found in two previous steps. A more detailed de-
scription of the method is available in (13).

In the current contest, one additional modification is introduced to deal with the penalization
introduced in Sections 3.2 and 3.3. If the point to be added to the neural network is penalized, it
is accepted only in the case, when it was the optimum found by evolutionary algorithm. The ra-
tionale behind this modification is to avoid the penalty-imposed discontinuities in the objective
function, which are impossible to capture by the smooth RBFN approximation.

5 Identification procedure verification
When assessing the reliability of the proposed identification procedure a special care must be
given to stochastic nature of the optimization algorithm. The analysis presented herein is based
on the statistics of 100 independent optimization processes, executed for each objective func-
tion. The termination criteria were set to: first, the number of objective function evaluations
exceeded 155; second, the value of objective function smaller than a stopping precision was
found. A particular optimization process was marked as ’successful’, when the latter termina-
tion condition was met. Note that since the reference simulation instead of experimental data
is used, the optimum for every objective function is equal to zero. Results of the performance
study are summarized in Table 5 showing the success rate related to a stopping precision to-
gether with the maximum and average number of function evaluations.

F Stopping precision Successful runs Maximal number Average number
of F ’s evaluation of F ’s evaluation

F1 10−3 100 32 16
F2 10−2 94 140 29
F2 10−3 80 140 47
F3 10−3 92 140 37
F3 3.10−3 76 143 47

Table 5: Summary of reliability study.

Moreover, the different values of stopping precision allow us to investigate the relation
between the accuracy of identified parameters and the tolerance of the objective function value.
Table 6 shows a concrete outcome of such an analysis, where the maximal and average errors
are calculated relatively to the size of the interval given by limit values for each parameter.

The results show that the maximal error for the elastic parameters E and ν is less than 3%,
which is sufficient from the practical point of view. This is also documented by Figure 4, where
no deviation of the reference and resulting curves is visible in the elastic range. For the hard-
ening stage (parameters σ̄f and K̄) a similar precision is unfortunately not sufficient as shown
by Figure 4a. Increasing the stopping precision to 10−3 reduces the error on parameters roughly
by 50%, which is sufficient to achieve almost perfect fit of the reference curve.



Parameter Stopping precision on F Average error [%] Maximal error [%]
E 10−5 0.41 1.23
ν 10−5 0.16 2.20
σ̄f 10−2 0.87 2.58
K̄ 10−2 0.78 2.49
σ̄f 10−3 0.30 0.59
K̄ 10−3 0.49 1.54
¯̄σf 10−2 0.47 1.32
¯̄β 10−2 2.34 12.21
¯̄σf 3 × 10−3 0.33 0.67
¯̄β 3 × 10−3 0.26 2.68

Table 6: Influence of stopping precision on accuracy of identified parameters.

Finally, a similar conclusion holds for the parameters ¯̄σf and ¯̄β describing the softening
part of the experiment. The stopping precision equal to 10−2 is too coarse to achieve sufficient
precision on parameters and needs to be reduced to 3 × 10−3. The effect of increased accuracy
is then well visible in Figure 4b. This step completes the verification of the algorithm.
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Figure 4: Comparison of load-deflection diagrams: (a) Hardening parameters (b) Softening
parameters.

6 Conclusion
We have proposed a sound identification procedure for material parameters of the constitutive
model for representing the localized failure of massive structures. The most pertinent conclu-
sions can be stated as follows:

i) The sequential identification approach employed for the uniaxial tensile test (14) can be
extended to the three-point bending test. The resulting algorithm is very straightforward and has
a clear link with the structure of the constitutive model. Moreover, each of three stages uses only
a part of the test simulation, which leads to substantial computational time savings.

ii) Due to the physical insight into the model, it was possible to construct simple objective
functions F1, F2 and F3 with a high sensitivity to the relevant parameters. This led to non-
smooth and non-convex objective functions, which were optimized by robust soft-computing
methods.



iii) The proposed identification procedure was verified on 100 independent optimization
processes executed for each objective function. In the worst case, the reliability of the algorithm
is 76% due to very small number of objective functions calls set in the termination condition.
From our experience with evolutionary algorithms (6), such a result is rather satisfactory.

iv) As the result of a sequential character of the identification procedure, the errors in iden-
tified parameters accumulate. Therefore, the values need to be determined with higher accuracy
then usually required in applications (i.e. 5%) and achievable by neural network-based inverse
analysis (15).

v) The major difficulty of the proposed methods is to properly identify the three stages
of structural behavior. From the point of view of method verification, where the reference
load-deflection diagram is not noisy, the problem was successfully resolved. To fully accept
the procedure, however, the experimental validation of the method appears to be necessary.
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