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Modelling of Imperfect Bond Between Composite Matrix and
Reinforcement by the FETI Method

J. Kruis, P. Stemberk !

Summary:Composite materials consist of a composite matrix and daetement
usually created by fibres. The overall properties of a contpanaterial strongly
depend on interaction between the composite matrix anddimforcement. The
contribution describes the interaction by so-called daaihiulation where the orig-
inal unknowns, in mechanical case displacements, are cepldy the dual un-
knowns, in mechanical case forces. The dual formulationaeermobust and the
conditions on interfaces are simpler than conditions in dniginal formulation.
The approach is based on the FETI method which was develagpadiamain de-
composition method in 1991 by C. Farhat and co-workers.

1. Introduction

The contribution deals with modelling of interaction of t@mposite matrix and reinforcement
which are basic constituents of a composite material. Th®mof a composite material de-
scribes not only the classical composites but also masesiath as reinforced or prestressed
concrete. The composite materials are used in many areasdafanical engineering, aircraft
engineering, civil engineering, etc. The composite mateare studied carefully and the mod-
elling of interaction between reinforcement and the contpasatrix is an inseparable part of
composite analysis.

The simplest analyses assume the perfect bond betweenrntipmsite matrix and reinforce-
ment. There are problems, where the perfect bond is adedeateiption of reality. Even the
perfect bond is the simplest case, it can cause numeridaluiies when an inappropriate nu-
merical model is used. Imperfect bond describes the reladitier but it leads to more serious
numerical difficulties than the perfect bond. The choicepgrapriate numerical model is more
important in this case.

The modelling of the interaction is based on pullout testse &rrangement of such tests is
the following. There is a composite matrix with one embedfilec which is under tension.
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The growing force in the fibre causes debonding of matrixeficwnnection and fibre moves
out from the matrix. Detailed description of pullout effees$ relatively complicated and sev-
eral simplified approaches are used. This contributionsdedh the case with perfect bonding
between reinforcement and matrix as well as debonding wkicbntrolled by a linear relation-
ship. The most general model with nonlinear debonding ishatied, but it is in the centre of
our attention.

2. Overview of the FETI method

The FETI method was introduced by Farhat and Roux in 1991 rh&aand Roux [1991].
It is a non-overlapping domain decomposition method whicforees the continuity among
subdomains by Lagrange multipliers. The FETI method or d@sants have been applied to
broad class of two and three dimensional problems of secoddaurth order. More details
can be found e.g. in Toselli and Widlund [2005], Farhat and>Rd994], Kruis [2006], Rixen
et al. [1999], Bhardwaj et al. [2000].

Let the original domain be decomposeditcsubdomains. Unknown displacements defined
on thej-th subdomain are located in the vectgr. All unknown displacements are located in
the vector

u’ = ((ul)Ta (u2)T> sy (um)T) (1)

The stiffness matrix of thg-th subdomain is denotel’ and the stiffness matrix of the whole
problem has the form

K= ) (2)

The nodal loads of thg-th subdomain are located in the vecirand the load vector of the
problem has the form

=@ ) (3)
Continuity among subdomains has the form
Bu=0 (4)
where the boolean matriB8 has the form
B = (B'B’...,B") (5)

The matricesB’ contain only entries equal th —1,0. With the previously defined notation,
the energy functional has the form

1
M(u,A) = éuTK'u, —ulf+A"Bu (6)



where the vectoA contains Lagrange multipliers. Stationary conditionshef €nergy func-
tional have the form

o _ Ku—f+B"A=0 (7)
ou
oIl

Equation (7) expresses the equilibrium condition whilegg)resses the continuity condition.
The known feature of the FETI method is application of a ps@uetrse matrix in relationship
for unknown displacements

u=K"(f-B"\)+ Ra (9)

which stems from floating subdomains. The stiffness mafraftoating subdomain is singular.
The matrixR contains the rigid body modes of particular subdomains hedé¢ctoi contains
amplitudes that specifies the contribution of the rigid batytions to the displacements. The
pseudoinverse matrix and the rigid body motion matrix cawbgen in the form

(K')* ) R' )
K* = e . R= f ) (10)
| (K™)* | R™
Except of utilisation of the pseudoinverse matrix, a soiNtgicondition in the form

(F-B"\) Lker K =R (11)

has to be taken into account. Substitution of unknown degsteents to the continuity condition
leads to the form

BK™B" A= BK"'f + BRa (12)
The solvability condition can be written in the form
R"(f—-B"X) =0 (13)

Usual notation in the FETI method is the following

F BK'™BT (14)
G = -BR (15)
d = BK'f (16)
e = —R'f (17)

The continuity and solvability conditions can be rewritteith the defined notation in the form

(e a)(a)- (%) a0

The system of equations (18) is called the coarse or integaablem.



3. Modification of the method

The classical FETI method uses the continuity conditiow(dich enforces the same displace-
ments at the boundary nodes. If there is a reason for diffetisplacements between two
neighbour subdomains, the continuity condition trans®itself to a slip condition. The slip
condition can be written in the form

Bu=s (29)

The vectors stores slips between boundary nodes. For this moment,ifhis sissumed to be
prescribed and constant.

Let the boundary unknowns be split to two disjunct parts. Bbendary unknowns which
satisfy the continuity condition are located in the veciQr while the boundary unknowns
which satisfy the slip condition are located in the veaigr Similarly to the continuity condition
in the FETI method, the vectots. andu, can be written in the form

u., = B.u (20)
u; = Bsu (21)

whereB,. and B, are the boolean matrices. Now, the continuity conditionthagorm
Bu=0 (22)
and the slip condition has the form
B,u=s (23)

The conditions (22) and (23) can be amalgamated to a newangcondition

e ()= (1) -

The energy functional can be rewritten to the form

1
II= §uTKu—qu+/\T(Bu—c) (25)

The stationary conditions have the form

Ku—-f+B"A=0 (26)
Bu=c 27)

As was mentioned before, the system of two stationary cmmdiis accompanied by the solv-
ability condition (11). The expression of the vectomiven in (9) remains the same and the
interface conditions has the form

BK™"B'A\=BK"f+ BRa —c (28)
and the solvability condition has the form

R"(f—-B"X) =0 (29)
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Figure 1: Perfect bond.

The coarse problem can be written with the help of notati@) {117) in the form

(e 0)(2)-(") @

The modified coarse problem (30) differs from the originarse problem (18) by the vector
of prescribed slipg on the right hand side.

The prescribed slip between two subdomains is not a commsm €n the other hand, the
slip often depends on shear stress. Discretized form oftemsaused in the coarse problem
requires a discretized law between slip as a difference ofrieighbour displacements and
nodal forces as integrals of stresses along element edgesof@he simplest law is the linear
relationship

c=HX\ (32)

where H denotes the compliance matrix. Substitution of (31) to thexrse problem (30) leads

to the form
(e S)(a)- (%) @

It should be noted that the coarse system of equations (3&uslly solved by the modified
conjugate gradient method. Details can be found in FarhdtRoux [1994] and Rixen et al.
[1999]. The only difference with respect to the system ($8he compliance matri¥f. Only
one step, the matrix-vector multiplication, of the modifeshjugate gradient method should be
changed. The compliance matrix may be a diagonal or neaatyothial matrix.

4. Numerical examples

Four cases of bonding/debonding behaviour are computedebglassical and modified FETI
method. There are always two subdomains. One subdomaieseis the composite matrix
and the second one represents the fibre. A perfect bond isiliEddirectly by the classical
FETI method. The usual continuity condition is used. Theldisements of the fibre and
composite matrix at selected point are identical and th@sdn is depicted in Figure 1.
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Figure 2: Imperfect bond (debonding).
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Figure 3: Imperfect bond with delay.

An imperfect bond is described by the modified FETI methodhwhe constant compliance
matrix H. The displacements of fibre are greater than the displadsménomposite matrix.
The greater force is applied, the greater slip occurs. Ttnatson is depicted in Figure 2.

A perfect bond followed by an imperfect bond is modelled by thodified FETI method.
At the beginning, the compliance matrix is zero matrix whesipresses infinitely large stiffness
between subdomains. At a certain load level, debondingtBeassumed and the compliance
matrix is redefined and it is a constant matrix in the follogvsteps. The displacements of
the fibre and matrix are the same at the beginning but thenatesdifferent. The situation is
depicted in Figure 3.

The last example shows similar problem as the previous ohe.cémpliance matri is
not assumed constant but the compliances are growing froovadues up to a certain level.
It means, that the stiffness is decreasing from infinitetgdavalue to some finite value. The
greater force acts, the higher compliance is attained aedt@r slip between the fibre and
composite matrix occurs. The situation is depicted in Fegur

5. Conclusions

A slight modification of the FETI method is proposed for perbk with the imperfect bond
between the composite matrix and reinforcement. The pastea is modelled by the classical
FETI method. Application of a constant compliance matrixde to linear debonding while
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Figure 4: Imperfect bond with changing compliance.

a variable compliance matrix can describe nonlinear deingreffects. The advantage of the
proposed modification stems from the structure of the caanpk matrix which can be nearly
diagonal and therefore computationally cheap. The secdvanéage stems from possible par-
allelisation. Each fibre, generally each piece of reinforest, as well as the composite matrix
can be assigned to one processor and large problems mayied sdficiently.
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