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Summary: The paper describes results of experiments with rotating spherical 
particles moving quasi-steadily in the calm water. The motion of the particles was 
recorded by a digital video camera. The Cartesian coordinates and the angle of 
rotation of the particles were determined from the record of the particles motion. 
The dimensionless drag coefficient, drag moment coefficient and translational and 
rotational Reynolds numbers were calculated from the time series of the particles 
coordinates and angle of rotation for each recorded frame. The effect of the 
particles translational motion on the drag moment and the effect of the particles 
rotation on the drag force were evaluated from the experimental data. 

 

1. Introduction 
The description of forces acting on a spherical particle moving in the fluid is important for 
many engineering disciplines, for instance in the river engineering, water treatment and gas-
particle or liquid-particle flow. The slowdown of the spherical particle rotation in a liquid 
depends on a viscous hydrodynamic moment or so called drag moment. Similarly, the 
decreasing of the particle translational velocity is caused by the drag force. The drag force 
acting on a sphere moving translationally without rotation in a fluid is fairly well investigated; 
see e. g. Vakhrushev (1965). Sawatzki (1970) described the drag moment of a rotating sphere, 
which does not move translationally. The influence of rotation on drag force was studied by 
Maccoll (1928), Barkla & Auchterlonie (1971), and Tanaka et al. (1990). As far as the aware 
of the authors the effect of translational motion on drag moment was not almost investigated. 
The paper deals with the experimental investigation of the drag force and drag moment of the 
spherical particle moving translationally with simultaneous rotation in a fluid. 

 

1. 1.  Drag force 

For a very slow translational motion, where Reynolds number Re = dp ur / ν << 1 (dp is 
spherical particle diameter, ur is particle relative velocity, ν is fluid kinematic viscosity), the 
drag force of non-rotating spherical particle is given by well known Stokes law (Landau & 
Lifsic, 1988): 
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 6d p rF r uπµ= − , (1) 

where µ = ν / ρf  is the dynamic viscosity of fluid, ρf is the fluid density, rp is the particle 
radius.  

The value of the drag force is generally given by the following formula: 
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where Cd is a drag force coefficient. Vakhrushev (1965) recommends for 0 < Re < 5x105 the 
following relationship: 
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Since for Re << 1 the Eqs. (2) and (3) give the Eq. (1), the Eq. (3) may be generally used for 
calculating the drag force Fd  acting on a non rotating spherical particle for Reynolds number 
varying from values of creeping flow up to so called “drag crisis”, when drag force coefficient 
decreases abruptly due to transformation of laminar boundary layer into the turbulent one, 
Nigmatulin (1987). 

If the particle moves translationally and simultaneously rotates the drag coefficient Cd 
depends not only on particle Reynolds number Re, but also on the rotational Reynolds number 
Reω = (ω rp

2 )/ν, where ω is the angular velocity of the particle. The influence of particle 
rotation on the drag coefficient Cd was suggested by Lukerchenko et al. (2005) as 
Cd = Cd0 (1 + 0.065 Reω0.3) for the Reynolds number range 300 ≤ Re ≤ 4x104 and 
200 ≤ Reω ≤ 4x104, where Cd0 is the drag coefficient for the particle movement without 
rotation, i.e. for Reω = 0.  

Tanaka et al. (1990) measured the forces acting on a rotating sphere in a wind tunnel. The 
experiments were conducted for the following range of parameters: 6.08x104 ≤ Re ≤ 1.4x105, 
0 ≤ Γ ≤ 1.3, where Γ = rp ω/ ur is the ratio of the surface velocity of the spherical particle to 
the relative particle-liquid velocity, Γ = 2 Reω/ Re.  

For illustration, the map of coordinates Reω vs. Re of the conducted experiments dealing 
with the drag force is presented in Figure 3. 

 

1. 2.  Drag moment 

The drag moment acting on a rotating sphere in the infinite calm fluid for Reω << 1 is given 
according to Landau & Lifsic (1988) as 

 38 pM rπµ ω= − ,  (4) 
Similarly as for the drag force the value of drag moment can be generally given as  
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where CS  is the dimensionless drag moment coefficient. Sawatzki (1970) determined 
experimentally the values of drag moment coefficient for a range of angular velocities given 



by 1 < Reω < 5x106, i.e. for the flow from creeping flow (Reω → 0) to the laminar boundary 
layer, through the laminar-turbulent transition regime up to the fully developed turbulent 
boundary layer. The results are presented in graphical form for the dimensionless coefficient 
of the drag moment CS, defined by Eq. (5). The data of Sawatzki can be read from the graphs 
with accuracy about 3% and they are valid only for the sphere that does not move 
translationally. In the case of translational and rotational motion the drag moment coefficient 
CS  depends also on both Reynolds numbers, Reω and Re, Lukerchenko et al. (2005).  
 

2. Experimental procedure 
The experiments were carried out in a rectangular glass vessel, which was 786 mm long, 602 
mm wide and 990 mm high. The water depth was kept on the level 812 mm. The rubber, 
silicone, and glass spherical balls were used as model particles, see Table 1.  

 

Table 1.  The spherical particle parameters 

Sphere Mass,  
( ±0.01g) 

Volume, 
cm3

Calculated 
diameter, 

cm 

Density,  
g/cm3

Number of 
trajectories

Rubber 1 10.50 9.67±0.03 2.64 1.09 8 
Rubber 2 25.70 25.2±0.1 3.64 1.02 3 
Silicone (Stomaflex® Solid) 70.09 36.6±0.1 4.12 1.92 10 
Glass 18.72 7.58±0.03 2.44 2.47 3 

The hairlines were drawn on the balls along two perimeters with the angle of 90° between 
them to make possible to visualise the particle rotation. Each measured particle was speeded 
up in a special chute ensuring the required particle rotational and translational velocity. The 
different initial heights of the particles at the chute were used to provide the required values of 
the initial translational and angular velocities of the individual particle.  

The motion of the particles was recorded by a digital video camera. Video recording rate 
was 25 frames per second. The dimension of obtained frames was 720x576 pixels. One pixel 
equalled approximately 2 mm in the plane of the particle motion, the error of coordinate 
determination was one pixel. 

During measurement of the light particles from 100 to 200 images were recorded for one 
trajectory. The trajectory of the dense particles consists from 10 to 20 images. From the 
images the Cartesian coordinates x (t), y (t) of the particle centre and the angle of particle 
rotation φ(t) were read using the software Graph2Digit. To evaluate the particle coordinates 
and the angle of revolution only particle trajectory segments close to straight lines were used; 
the non-steady process of the particle entry into the water was rejected.  

 

3. Numerical method 

For the quasi-steady process of 2D particle motion in fluid a steady approximation of drag 
force and drag moment acting on a spherical particle was considered. In the equations of 
motion we take into account the known unsteady forces, i.e. the history force and force of 
added mass, which are supposed to be negligible. Under such assumption the flow around the 
particle and hence the forces and the moment are completely determined by the following set 



of parameters: ρf, µ, dp, ω, ur. Two dimensionless numbers, Re and Reω, can be determined 
from the above mentioned parameters; and both dimensionless coefficients, drag coefficient 
Cd and drag moment coefficient CS depend on these two dimensionless numbers: 
Cd = Cd (Re, Reω) and CS = CS (Reω, Re), respectively 

According to Lukerchenko et al. (2005) the equations of the particle motion are  
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where J = ρπ dp
5/60 is the particle moment of inertia, Ω is the particle volume, ρ is the particle 

density, and 
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where Fg , FM , FB , and Fm are the gravitational submerged force, the lateral Magnus force, 
the Basset history force (Mei et al., 1991), the added mass force, respectively;  is the 
gravity acceleration vector, C

g
M  is the Magnus force coefficient and Cm = 0.5 is the 

dimensionless added mass coefficient. 
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Figure 1   The forces acting on the rotating particle moving translationally in calm water. 

The forces acting on a particle and their orientation are shown in Figure 1.  is directed 

oppositely to the curve tangent unit vector 
dF

τ , MF  is parallel to the curve normal unit vector 
. The values of the coefficients Cn d , and CS can be calculated independently.  



Since the scalar product of the unit vector τ (tangential to the particle trajectory) and the 
Magnus force MF  equals zero, the unknown Magnus force cancels and the drag coefficient Cd 
can be expressed as  
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From Eq. (7) the drag moment coefficient CS  can be expressed: 
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where ωz is the projection of ω  on axis perpendicular to the plane of motion. 

For the numerical calculation of the Basset force integral an approximate method 
proposed by Brush et al. (1964) was used: 
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Equations (12) and (13) allow the calculation of the dimensionless coefficients for each 
point of recorded particle trajectory, provided that the first and the second time derivatives of 
the particle coordinates and of the angle of rotation are known. The experimental data x (t), 
y (t) were fitted using the least square method with polynomial functions up to the third power 
of t, φ (t) was fitted with rational function (a + t) / (b + ct) and the first and the second 
derivatives were calculated.  

The drag coefficient and drag moment coefficient were calculated numerically for each 
frame of the particle trajectory, except for the first two and the last two frames for which the 
second derivatives were not available. The corresponding values of the Reynolds number Re 
and the rotational Reynolds number Reω were also calculated for each frame of the relevant 
particle record.   

The following procedure was applied to average the experimental data. The experimental 
area Re vs. Reω (4.0 x 103 < Re  < 4.0 x 104  and 2.0 x 103 < Reω  < 4.0 x 104 ) was split into 
30x30 cells, whose dimensions grow according to the geometric series. The use of geometric 
series for the length and width of a cell along Re and Reω axes makes the cells look uniform in 
logarithmic coordinates. For a cell, where at least four data points exist, Cd and CS were 
calculated as an arithmetic mean of all data points in the cell. In most cases a cell comprised 
points from more than one trajectory. The positions of the individual cells were represented 
by the value of Re and Reω, which are the geometric mean of the values on the responsible 
boundary. The experimental data and the cells are illustrated in Figure 2.  

 



4000 6000 8000 20000 4000010000

2000

4000

6000

8000

20000

40000

10000

Experimental data

Re

Reω

Rubber 2

Rubber 1

Silicone

Glass

 
Figure 2   The Reω vs. Re map of the experimental data and the cells.  
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Figure 3     The bubble plot of drag force coefficient. The radius of a bubble is proportional to 

drag coefficient.  
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Figure 4   The comparison of the calculated drag coefficient with Barkla & Auchterlonie 

(1971) data.  
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Figure 5    The comparison of the calculated drag coefficient with Maccoll (1928) and Tanaka 

et al. (1990) data. 



4. Results and discussion 
4. 1.  Drag coefficient   

The bubble plot of the drag coefficient in the area Reω vs. Re is presented in Figure 3. The 
comparison of the chosen drag coefficient data of Rubber 1 and Rubber 2 particles with the 
data of Barkla & Auchterlonie (1971) is presented in Figure 4. Only those points are plotted 
in the Figure 4, which have approximately the same value of Reω and can mutually be 
compared. The comparison of the drag coefficient data of silicone ball with the data of 
Maccoll (1928) and Tanaka et al. (1990) is presented in Figure 5.  

The rotation of the particle increases the drag coefficient. However, some results of 
Tanaka et al. (1990) show a drag coefficient lower than that without rotation, especially at the 
high rotational and translational Reynolds numbers. Several points of our results also show 
the drag coefficient lower than that without rotation; it does not comply well with adjacent 
points of Barkla & Auchterlonie (1971). 

Influence of the rotation movement on a drag coefficient is presented in Figure 6. The 
relationship Cd = Cd (Re, Reω) does not allow a separation of the individual variables Re and 
Reω effect, thus the Figure 6 shows only the relationship Cd / Cd0  = f (Reω), which is only a 
rough approximation. 
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Figure 6   Influence of rotational motion on the relative drag coefficient Cd /Cd0.  

4. 2.  Drag moment coefficient. 

Relationship between the drag moment coefficient Cs and Reω is presented in Figures 7 and 8. 
The ratio CS /CS0 versus Re is presented in Figure 9. The general tendency can be formulated - 
with increasing value of Re the drag moment coefficient CS also increases if the rotational 
Reynolds number Reω > 5 x 103. For the lower Reynolds number the opposite is valid. 
However, the available experimental data are insufficient to make general conclusions.  
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Figure 7   Drag moment coefficients CS versus rotational Reynolds number Reω. Comparison 

with Sawatzki (1970) data (for only rotation) - Rubber 1, 2, Glass. 
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Figure 8. Drag moment coefficients CS 
versus rotational Reynolds number 
Reω, comparison with Sawatzki 
(1970) data. Silicone ball.  

Figure 9. The relative drag moment 
coefficient CS / CS0 versus Reω. 
Influence of translational motion on 
the drag moment coefficient.  



5. Conclusions 
Experimental investigation of the drag force, drag moment and its dimensionless coefficients 
of the spherical particle moving translationally and simultaneously rotating in calm water 
were conducted.  

The drag coefficient was found to be in satisfactory agreement with the drag coefficient 
measured by other authors in the relevant ranges of Reynolds numbers. The drag moment 
coefficient was compared only with available data for the stationary rotating sphere. 

Effects of translational motion on the drag moment coefficient and of the rotational 
motion on the drag coefficient were observed. It was found that translational motion generally 
increases the drag moment coefficient and the rotation of the ball generally increases the drag 
coefficient. 

With increasing value of particle Reynolds number Re the drag moment coefficient CS 
also increases if rotational Reynolds number Reω > 5 x 103. For the lower rotational Reynolds 
number the opposite effect was observed.  

However, the available experimental data are sufficient to make only preliminary 
conclusions.  
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7. Notation 

dC  - drag force coefficient; 

0dC  - drag force coefficient, ; 0Reω =

mC  - added mass coefficient; 

MC  - Magnus force coefficient; 

SC  - drag moment coefficient; 

0SC  - drag moment coefficient, ; 0Re =

pd  - spherical particle diameter; 

BF  - Basset force; 

dF  - drag force; 

gF  - submerged gravitational force; 

mF  - added mass force; 

MF  - Magnus force; 
g  - gravity acceleration; 
J  - particle moment of inertia; 
M  - drag moment  

n  - unit vector normal to the trajectory; 
Re  - particle Reynolds number; 
Reω  - rotational particle Reynolds number; 

pr   - spherical particle radius; 

ru   - particle-liquid relative velocity; 
( )x t , ( )y t   - coordinates of particle trajectory; 

( )tϕ - particle angle of rotation; 
Γ  - ratio of the spherical particle surface 
velocity to the particle-liquid relative velocity; 
µ  - fluid dynamic viscosity; 
ν   - fluid kinematic viscosity; 
ρ  - particle density; 

fρ  - fluid density; 
Ω   - particle volume; 
τ  - unit vector tangential to the trajectory; 
ω   - angular velocity of sphere; 
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