
FORCED VIBRATION OF BLADED DISK
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Summary: The paper presents the modal synthesis method for a mathematical
modelling of rotating bladed disk vibration. The standard finite element software
does not allow to consider all effects of the rotation. The presented method makes it
possible to respect Coriolis and centrifugal forces acting continuously on the three-
dimensional elastic disk and one-dimensional elastic blades connected together at
the top with shrouds. A centrifugal blade stiffening is considered. The method is
applied to the steady forced vibration of the real rotating bladed disk excited by
aerodynamic forces.

1. Introduction

Many rotating systems are modelled as one-dimensional rotating bodies with rigid disks at-
tached to them as is shown for example in publications of Krämer (1993) and Yamamoto &
Ishida (2001). However, there are cases in which the high-frequency modes of rotating bodies
cannot be neglected. Typical example is the bladed disk in turbomachines excited by aerody-
namic and hydrodynamic forces (Birget, 2001). One of the newest and more comprehensive
publications is monograph of Genta (2005), where the three-dimensional modelling of rotors is
described in more details. In this monograph the author prefers a discretization of an axially
symmetrical rotors using annular axi-symmetric elements. This approach cannot be applied for
discretization of the bladed disks.

The aim of this article is to develop suitable methodology for forced vibration modelling
of the rotating bladed disk using experience with discretization of 3D rotating disks Šašek et
al., (2006), modelling the rotating blade Kellner & Zeman (2006), modal analysis of the bladed
disk (Zeman et al., 2007) and with applications of the modal synthesis method in dynamics of
machines (Zeman, 2005). The recent advances in CFD/FEM software and hardware allowed the
computation of the fluid-flow introduced forces and resulting stresses in turbomachinery blades
(see Misek et al., 2007). The calculated time-dependent pressure distribution is then used for
forced response of the bladed disk.

2. Mathematical model of the rotating bladed disk

The rotating bladed disk can be generally decomposed into disk (subsystem D) and separated
blade packets (subsystems Ps, s = 1, 2, . . . , p), where p is their count (Fig. 1). We assume
that the disk is centrally clamped into turbomachine rotor rotating with constant angular speed
ω. The disk nodes on the inner radius are fixed in all directions. The blades (Bj) in packets
(Ps) are connected on the top with shrouds (S). The blades elastic seating to disk is replaced
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Figure 1: Scheme of the bladed disk with detail of one blade packet.

with elastic supports in outer contact points of two dog bolts between disk and every one blade
foot. The blade packets are mutually connected by elastic linkages characterized by diagonal
stiffness matrix KL = diag(ku, kv, kw, kϕ, kϑ, kψ).

The mathematical model of the undamped subsystems incorporated in the rotating bladed
disk can be written in matrix form Šašek et al., (2006), Zeman & Kellner (2006)

MDq̈D(t) + ωGDq̇D(t) +
(

KsD − ω2KdD

)

qD(t) = ω2fD + fC
D (1)

MP q̈P,s(t)+ωGP q̇P,s(t)+
(

KsP − ω2KdP + ω2KωP

)

qP,s(t) = ω2fP+fC
P,s+fP,s(t), (2)

s=1,2,...,p,

where mass matrices MD, MP , static stiffness matrices KsD,KsP and dynamic stiffness
matrices KdD, KdP of the disk (subscript D) and blade packets (subscript P ) are symmet-
rical. Symmetric matrix KωP expresses a centrifugal blade stiffening (see in Kellner & Zeman
(2006)). Skew-symmetric matrices ωGD and ωGP express gyroscopic effects. Centrifugal
load vectors ω2fD and ω2fP are constant in time. Vectors fP,s(t) express the excitation of
the blade packets by aerodynamic forces. All presented matrices in models (1) and (2) corre-
spond to mutually uncoupled subsystems and are created by means of finite element method
(for more details see contributions Šašel et al., (2006), Kellner & Zeman (2006) and Zeman &
Kellner (2006)). Vectors fC

D and fC
P,s (s = 1, 2, . . . , p) represents the coupling forces in general

coordinates of subsystems

qD =
[

. . . u
(D)
i v

(D)
i w

(D)
i . . .

]T

∈ RnD (3)

qP,s =
[

qTS1
qTB,1q

T
S2

qTB,2q
T
S3

qTB,3q
T
S4

]T

P,s
∈ RnP (4)
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Figure 2: Scheme of the disk.

where u
(D)
i , v

(D)
i , w

(D)
i in (3) are

disk nodal displacements in direc-
tion of disk rotating axis x, y, z
(Fig. 2). Coordinates of subvec-
tors qB,j (j = 1, 2, 3) express the
blade displacements of the node i
(Fig. 1) in direction of rotating axis
xj, yj, zj and small turn angles of
the blade cross section (subscript j
corresponds to blade in packet)

qB,j = [. . . ui vi wi ϕi ϑi ψi . . .]
T

B,j , i = 1, 2, . . . , N, j = 1, 2, 3. (5)

Coordinates of subvectors qS1
,qS2,...

express the shroud’s displacements in nodes S1, S2, . . .

qx = [ux vx wx ϕx ϑx ψx]
T

P,s , x = S1, S2, . . . (6)

Vector fC
D represents the forces in all blade’s seating to disk acting on the disk. Vector

fC
P,s expresses the coupling forces in blade’s seating of packet P, s and in shroud linkages

between blade packets acting on single packet P, s. The global coupling force vector in global
configuration space of all general coordinates

q =
[

qTD qP,1 qP,2 . . . qP,p
]T

(7)

can be calculated from the potential (strain) energy as

fC =











fC
D

fC
P,1
...

fC
P,p











= −
∂EC

p

∂q . (8)

This energy can be expressed in the additive form

EC
p =

p
∑

s=1

b
∑

j=1

EC
s,j + EC

P , (9)

where EC
s,j is coupling strain energy between blade j in blade packet s and the disk and the EC

P

is strain energy of all shroud linkages between blade packets. The linearized global coupling
force vector can be written in the form

fC = −

p
∑

s=1

b
∑

j=1

KC
s,jq − KC

Pq . (10)

The coupling stiffness matrices result from equations

∂EC
s,j

∂q
= KC

s,jq ,
∂EC

P

∂q
= KC

Pq . (11)



The mathematical models (1), (2) using (8) and (10) after completion of a damping can be
rewritten in the global matrix form

[

MD 0

0 MR

] [

q̈D(t)
q̈R(t)

]

+

([

BD 0

0 BR

]

+ ω

[

GD 0

0 GR

])[

q̇D(t)
q̇R(t)

]

+

+

(

[

KD(ω) 0

0 KR(ω)

]

+

p
∑

s=1

b
∑

j=1

KC
s,j

)

[

qD(t)
qR(t)

]

= ω2

[

fD

fC

]

+

[

0

fR(t)

]

(12)

where
qR =

[

qTP,1 qTP,2 . . . qTP,p
]T
∈ RnR , nR = p nP (13)

is the general coordinate vector of a blading with shroud creating the blade rim (subscript R).
The global stiffness matrix of the rotating disk has the form

KD(ω) = KsD − ω2KdD ∈ RnD,nD . (14)

The matrices of the blade rim are compiled from the blade packet matrices

XR = diag (XP , XP , . . .XP , ) ∈ RnR,nR , X = M ,G,Ks,Kd,Kω. (15)

The global stiffness blade rim matrix is

KR(ω) = KsR + ω2 (KωR −KdR) + KC
PP ∈ RnR,nR , (16)

where KC
PP is the coupling stiffness matrix of all shroud linkages between blade packets satis-

fying the equation
∂EC

p

∂qR
= KC

PPqR . (17)

The centrifugal load vector of the blade rim is

fC =
[

fT
P fT

P . . . fT
P

]T
∈ RnR (18)

and vector of the aerodynamic forces has the general form

fR(t) =
[

fT
P,1(t), fT

P,2(t), . . . , fP,p(t)
]T
∈ RnR . (19)

It is advantageous to assemble condensed mathematical model of the rotating bladed disk
with reduced degrees of freedom (DOF) number, because mainly the three-dimensional elastic
disk could have large DOF number nD and blade rim DOF number is nR = p nP .

The modal transformations

qD(t) = mV DxD(t) , qR(t) = mV RxR(t) (20)

are introduced for this purpose. Matrices mV D ∈ R
nD,mD and mV R ∈ R

nR,mR are ”master”
modal submatrices of subsystems D (disk) and R (blade ring) obtained from modal analysis
of the mutually uncoupled (KC

s,j = 0 for all s, j) and non-rotating subsystems represented by
models

MDq̈D(t) + KsDqD(t) = 0 , MRq̈R(t) +
(

KsR + KC
PP

)

qR(t) = 0 . (21)



A condensation (reduction in DOF number) of both systems is attached by selection of a set of
mD and mR subsystem master mode shapes (mD < nD, mR < nR). The new configuration
space of dimension m = mD + mR is defined by vector

x(t) =
[

xTD(t) xTR(t)
]T
∈ Rm . (22)

After the transformations (20) with considerations of the orthonormality conditions
mV T

DMD
mV D = ED and mV T

RMR
mV R = ER the model (12) can be rewritten in the

condensed form

ẍ(t) +
(

B̃ + ωG̃
)

ẋ(t)+

+

(

Λ + ω2
(

K̃ω − K̃d

)

+ V T

(

p
∑

s=1

b
∑

j=1

KC
s,j

)

V

)

x(t) = V T (ω2f 0 + f(t)) . (23)

Matrices
X̃ = diag

(

mV T
DXD

mV D ,
mV T

RXR
mV R

)

∈ Rm,m (24)

for X = G, B, Kd, Kω (with KωD = 0) and

Λ = diag (mΛD ,
m
ΛR) V = diag (mV D ,

mV R) (25)

is composed from spectral submatrices m
ΛD ∈ RmD,mD , mΛR ∈ RmR,mR of the subsystems

satisfying the conditions

mV T
DKsD

mV D = m
ΛD ,

mV T
R

(

KsR + KC
PP

)m
V R = m

ΛR . (26)

The vector f 0 =
[

fT
D , fT

C

]T
expresses the influence of the centrifugal forces. The global

vector of the aerodynamic forces is f(t) = feiωkt, where f =
[

0
T fT

R

]T
. We assume the

harmonic blade excitation in axial (outspread to turbomachine rotor) and circumferential (tan-
gential) direction concentrated in blade nodals i (Fig. 1) in the complex form

fB,j(t) = [. . . ;Fiy cosϕj,s + iFiy sinϕj,s;Fiz cosψj,s + iFiz sinψj,s; . . .] e
iωkt , (27)

where ωk is dominant excitation frequency corresponding to number of stator nozzles multiply
angular velocity of the rotating disk. The angle ϕj,s is the phase angle of the aerodynamic
forces acting on j-th blade in s-th blade packet in the axial direction and ψj,s is the phase angle
in tangential direction on the same blade. These phase angles can be expressed in the form

ϕj,s = [j − 1 + (s− 1)3] 2π
pSB
pMB

ψj,s = ϕj,s − ϕ , (28)

where ϕ is the relative phase shift between aerodynamic forces applied in axial and circum-
ferential direction (see a contribution Misek et al., 2007) and pSB (pMB) is stator (rotor) blade
number.



3. Forced vibration

We consider only aerodynamic forces acting on the moving blades, that’s why we don’t use
below the constant centrifugal force f 0 presented in (23). The steady dynamic response of the
rotating bladed disk calculated at the condensed model (23) is of the form x(t) = xeiωkt with
complex amplitude vector

x = Z−1V Tf (29)

where

Z = −ω2
kE + iωk

(

B̃ + ωG̃
)

+

(

Λ + ω2
(

K̃ω − K̃d

)

+ V T

(

p
∑

s=1

b
∑

j=1

KC
s,j

)

V

)

(30)

is the dynamic stiffness matrix of the condensed model and f is vector of the complex ampli-
tudes of the aerodynamic excitation. Damping matrix B is proportional to matrices of mass and
static stiffness of subsystems D (disk) and R (rim). By using modal transformation we obtain
the steady state solution in global configuration space

qeiωkt = V xeiωkt . (31)

This solution is in complex form and the real displacements of the exciting rotating bladed disk
is the real part of the complex generalized coordinate vector

q(t) = Re{qeiωkt} . (32)

4. Application

On the basis of the presented method the original software in MATLAB code was created. The
matrices of the disk were obtained by three-dimensional finite element method as is shown in
Šašek et al. 2006. The matrices of the blade rim were derived by one-dimensional finite ele-
ment method applied to blades with shroud (Zeman & Kellner, 2006). The aerodynamic forces
applied in axial and tangential direction on each moving blade were assumed from Misek et
al. (2007). The software and the proposed approach was applied to the centrally clamped steel
bladed disk of following basic parameters:

disk inner/outer radius 0, 335/05754 m
disk thickness 0, 155 m
length of blades 0, 253 m
width/thickness of shroud with rectangular profil 0, 1005/0, 014 m
number of blades in packets b 3
number of blade packets p 18
DOF number of the discretized disk nD 3240
DOF number of the discretized blade ring nR 3672
Young’s modulus of the disk, blade and shroud materials E 2.1011 Pa
Poisson’s ratio ν 0, 3
mass density % 7800 kg.m−3



translation stiffnesses of the flexible blade seating in disk (Fig.1)
kxj

= kzj
= 2, 8.109; kyj

= 4, 88.109 Nm−1

torsional/flexural stiffnesses of the flexible blade seating in disk (Fig.1)
kxjxj

= 1, 05.108; kyjyj
= 1, 5.107 kzjzj

= 3.107 Nm.rad−1

stiffnesses linkages between blade packets (Fig.1)
ku = kv = kw = 109 Nm−1; kϕ = kψ = 107; kϑ = 106 Nm.rad−1

amplitude of global axial force Fy acting on one blade 700 N
amplitude of global tangential force Fz acting on one blade 1600 N
relative phase shift between Fy and Fz 25

The results of excited vibrations of rotating bladed disk are shown in Fig.3, Fig.4, Fig.5 and
Fig.6. In Fig.3 there can be seen higher vibration round 1000 rpm and in the end of investigated
range 3000 rpm. This can be compared with axial blade node displacements in Fig.5, where the
characteristic of blade packet vibration is shown. Important result is that the shroud moves less
than the disk. It can be caused high exciting frequency (3000 rpm → fk = 2πωk = 1600 Hz)
of aerodynamic forces, which excites more disk due to two dog bolts between blades and disk.
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Figure 3: Amplitude characteristics of axial blade node displacements in the first packet.
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Figure 4: Amplitude characteristics of tangential blade node displacements in the first packet.
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Figure 5: Time depend of axial blade node displacements in the first packet for 3000 rpm.
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Figure 6: Time depend of tangential blade node displacements in the first packet for 3000 rpm.



5. Conclusion

The new methodology of the rotating bladed disk vibration is based on the system decomposi-
tion into subsystems – disk and blade rim – joined by discrete couplings. The mathematic model
includes an influence of Coriolis and centrifugal forces on both subsystems, blade’s elastic seat-
ing to rotating flexible disk, centrifugal blade stiffening, elastic linkages between a shroud of
the blade packets and proportional damping of subsystems. The excitation forces acting along
the moving blade length induced by steam flow (obtained from CFD analysis) are included. By
using modal synthesis method the coupled system of disk and blade rim is condensed to calcu-
late steady aerodynamic vibrations of the bladed disk. The method can be used in turbomachine
dynamics.
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