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MODELLING OF THE RAILWAY WHEELSET MOVEMENT
CONSIDERING REAL GEOMETRY

R. Jandora!

Summary: Problem of wheelset rolling on rails is commonly solved problem of
engineering practice. Only ideal geometry of the wheelset is used in majority of
studies to simulate its movement. However, shape irregularities appear as a result
of wear and they have great influence on the movement. In this paper a model is
presented which can be used to simulate wheel set motion in the three dimensional
gpace. Shape irregularities are implemented into the model and diverse ways to
calculate the contact forces are presented and compared with respect to accuracy
of results they provide and their demands on computer equi pment.

1. Introduction

Problem of wheelset rolling on rails is commonlyved problem of engineering practice. The
goal of plenty of studies published on this thems¢oi achieve minimisation of wear of both
wheels and rails. Other studies investigate proladéwibration and noise brought on railway
vehicles by corrugation of wheels and rails.

Most common models used for studying three dimerdionovements of wheelsets as
presented in (Dukkipati, 2000; Iwnicki, 2006; Segl& Vimmr, 2006) do not consider
influence of corrugation, only ideal geometry idsHowever, shape irregularities appear as
a result of wear and they have great influencehenvtheelset movement. Other studies (as
K. Knothe’s contribution to (Jacobson & Kalker, B)Quse only two-dimensional models for
modelling of corrugation on rails or out-of-rountheels.

However, both real wheelset motion and shape iteetjies of wheels and rails have great

influence on railway vehicle dynamics. In this papenodel is presented which can be used
to simulate wheelset movement in the three dimes$ispace. Shape irregularities are

implemented into the model and diverse ways toutatle the contact forces are presented.

2. Coordinate systems

Main coordinate system is connected to the raile X-axis is tangential to the centreline of
the rails, the y-axis lies in direction of placio§the sleepers and the z-axis is normal to the
plane of rails. Another coordinate system is cotewdo the wheelset. This one can have
Cartesian or cylindrical representation and bo#hthe same dyaxis which is oriented along
the wheelset axis. The other two axeg &) are normal to thegyaxis and can be represented
in cylindrical dimensions Randay.
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Relation between the main coordinate system and/hieelset coordinate system is described
with use of three angles (see fig. 1):
w — angle between the wheelset axis projectiontimaground plan and the main y-axis,
¥ — angle between the wheelset axis and the hoakplane,
¢ — immediate value of the wheelset rotation.
These angles are similar to Euler angles so thearmee the transformation matrix from the
wheelset coordinate system into the main coordisgtgem.

Co=Cys(v. 9, 9) 1)
The wheelset is moving so the matrix of angulaooiy Qp is defined:
o 9-cosy +¢- siny- cod

X

o, =|o, |=| 9-siny —¢-cogy- co |>Q, 2
o, W —@-sing
Position and velocity of the centre of gravity bétwheelset is
x=[x v af )
=[x % &] @
\;
3
1 |
a) Top view b) Front view

Fig. 1. Position of the wheelset in the main comate system

3. Whed-rail contact

Contact of each wheel-rail pair on the left sideonrthe right side is solved separately. Each
one has its geometry described with its own fumstiand contact forces are calculated for
either pair. However, the algorithm is same fobgitles so it is not presented separately. But
it has to be expressed, that the following calaorest have to be followed through for both left
and right wheel-rail contact pair.

3.1. Geometry

Shape of the wheel is described with the funcBob(fig. 2) which is the sum of the ideal
wheel shap&q and the shape irregularitie;:

R(ad1yd):Rd(yd)+Rrr (ad’yd) (5)
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Fig. 2. Example of the wheel with shape irreguiesit

Function of the rail surfacH (fig. 3) is sum of the actual deflection of thd d;, the ideal
shape of the raiNiy (including placement of the rail under the 1:201040 angle) and the
corrugationN;;r

N(X,¥)=Ng (X)+Ng (%, y)+ N, (X,y) (6)
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Fig. 3. Example of the rail with corrugation

Function of distance between the wheel and thetraih(c,,y,) is fundamental for solving
the contact forces. Point of the wheel surfacééwheelset Cartesian coordinate system is
x, =[R-cosz, Yy, R-sinz,] (7)



In the main coordinate system it is

X, =Cp - Xy +X_ (8)

The normal to the surface is found as
dR

tmz{—-cowd -R-sir;, O r
Xy Xy

{dR R T
t,=|—-Cosa;, 1 —- siny,
dy, dy,
to ¥t
[t <t
nW = |:an r\/v,y r\/v,z :|th - |:an an¢ r\,\,,,g :|;a

Point of the rail surface is defined as

% =[%, %, %]

X1= ~h- Cos(r\/v,(p)' Sir(r\/v,s) T X

X, ==h-sin(n,, ). sin(n,, )+ X, ,

X 3= N(X 1% ,)

These equations mean that the point of interestdie the normal of the wheel surface in
unknown distancé. This distance is found by solving the nonlineguagion

Oz—h-cos(ang)ﬂg”‘a—xrvs(h) (11)
Thus the distancé(«,,y,) for every point of the wheel surface can be found.

.
- sim, +R- cosd}

9

n =

w

(10)

3.2. Contact forces

When solving the contact forces in the wheel raiftact, two different approaches can be
used. It can be assumed that the contact patahtisei shape of ellipse or that the contact
patch has a general shape.

A) Hertzian contact
Hertz theory of contact (Hertz, 1881) assumes ttimatcontact patch is elliptic. Minimum of

the distance functiom(«,,y,) can be found with the simplex method. It can beaggr than

zero (then there is a gap between the wheel andather less than zero (then the wheel and
the rail are in contact and deformed). In the er&rehe centre of the contact ellipse is
expected. In order to find the contact forces thstsps have to be completed — principal
coordinate system and principal curvatures of thetact patch have to be found and then
normal and tangential forces have to be calculated.

1) Principal coordinate system and principal curvatures of the contact patch

Algorithm of finding principal coordinate system damprincipal curvatures of surface is
described in (Budinsky, 1983). Points of the swefacare functions of two parametarsand
Uz

Xs = |:Xs,1(u11u2) XS,Z(ul’u 2) XS ,3(u 2u 2):|T (12)



Tangential vectors of the surface are
t,=—22t i=1,2,3j=1: (13)

Normal vector of the surface is
t, xt,

- (14)
it <t
Matrix G of the first fundamental form of the surface is

G, =t t, i=12j=12 (15)

Matrix H of the second fundamental form of the surface is

2
H, =n-— s i=1,2j=12 (16)
ou, oy,

Principal curvature€, of the surface are eigenvalues of the malixG ™ and they can be
solved using equation

(H-G*'-C,-1)w=0 (17)
Outputs of the eigenvalue algorithm are matriCegeigenvalues) and/ (eigenvectors)
C, = Ca O (18)
1o C,
W — |:Vvl,l W1,2:| (19)
W2,l W2,2

Using the eigenvectors and tangential vectors efdilrface two principal directions of the
surface are found

“ }” i=1,2j=1¢2 (20)
Principal coordinate system of the surface is eck&tom properly arranged principal vectors
of the surface and the normal of the surface

Crs :[t o1 Lpo n] (21)
Function of the surface of the wheel (in the whelet®ordinate system) is
Xy =| R(@y,¥q4)-COSzy Yy R(ay ¥y)- siny, T (22)

whereay andyy are the parameters of the surface. Function obtinface of the rail (in the
main coordinate system) is

=[xy N(xy)] (23)
where x and y are the parameters of the surface. By following pnesented algorithm
principal coordinate system of the wh&&is\y and principal coordinate system of the rail

Cpsr is Obtained.
Undeformed distance of surfaces is generally

(AL+A2)X +(C,+C,) XX, + 1(B +B )X (24)

However, the middle tern(Cl+C2)xlx2 has zero value in the Hertz theory of contact.

Therefore both principal coordinate system of thee@ and principal coordinate system of
the rail have to be rotated into the common priacipoordinate system where the term
(C, +C,)xx, vanishes (Kalker, 1990).



Both surfaces have common normal and they areedtagainst each other by anglerhe
angle by which coordinate system of the wheel lmasotate into the common principal
coordinate system is

£, :%-arcta SI?:ZE = (25)
cosZ — b w2
Cr,l - Cr,2

and the angle of rotation from principal coordinatestem of the rail into the common
principal coordinate system is

g =¢&,—¢ (26)
Thus the transformation matrices are
[cosw, - sim,
T,=|sino, coso, (27)
0 0o 1
[cosw, —sim, O
T =|sine, cos, O (28)
0 0o 1
_— [cosw, - simw} (29)
"2 | sinw, coso,
T,- C?Sa)r - sm'or} (30)
| sine,  coso,
The common principal coordinate system is then
Cos = Cps,w Ty = Cps,r T, (31)

2) Hertzian normal force
Undeformed distance of the surfaces in contactrdoug to the Hertz theory of contact as
presented in (Johnson, 1985; Kalker, 1990; Jaco&d¢alker, 2000) is in the form of

h= Dl,le + D2,2X22_ q (32)
Constant®; 1 andD, , are common principal curvatures acquired from
D:%'(TWZ'CW'TJ\;Z_TrZ'Cr'TrTZ) (33)
and they are used to get angglefrom
cost,, = Du=Ds
Dl,l+ D2,2
The valuecost,, is input into the axial function
D(m?)-C(m?
cost,, =n?’ ( ) - ( ) (34)
E(m’)

where function<, D andE are complete elliptic integrals (see Kalker, 19%0pm the axial
function excentricitym of the contact ellipse is acquired. Then, accgdm the common
principal curvature®;; andD- ,, ratio of squares of the half-axes of the contlighse is
found



-t
1-m?* for D,,<D,, (35)
k=1 1

> for D,,>D,,

Another elliptic integralsK andE are required:
K = EllipticK (m’)
E = EllipticE (m’)
The normal force is then

3

N = 227G . E(_h) - (36)

3(1_ ,u) (D1,1+ Dz,z) kK

and half-axes of the contact ellipse are
3N(1- p)E
e =23 37

\/ 27G(D,,+D, )k, (37)
b =2k (38)

G is the modulus of rigidity and is the Poisson’s ratio.

3) Tangential forces

Tangential forces in the contact ellipse can beezbin different ways. Three of them are
described below. Each of them requires the rolliwglocity to be known. The
x-component of the wheelset velocity can be comsttiéhe rolling velocity:

VroI :[Xt 0 O]T (39)
The contact patch has different orientation thanrttain coordinate system so projection into
the plane of the contact patch is needed

1 00
Vg, =[0 1 0[-Cps-V,, (40)
0 0O
Magnitude of the rolling velocity is
V= | Vi (41)

Rolling contact theories assume the x-axis of thetact patch is identical with the direction
of the rolling velocity; therefore the common piipad coordinate system of the contact patch
has to be once again rotated by the angle

v,
£, = arctan—"r (42)
v,

rol,r,x
coss,, -—Sirg, 0O
=|sing, cos, O (43)
0 0 1

Velocity of the point of the wheel which is the tenof the contact ellipse is
X, =8, -Cp X4 +X, (44)

T

rol



Angular velocity of the wheelset ip (from eq. 2). In order to calculate the contactés
they have to be transformed into the coordinateesysof the projection of the rolling
velocity:

Xyr = Tro  Chs Xy, (45)

O = Crs - 0p (46)
The rail is not moving so these values are thel rgjp and the rigid spin in the contact patch.
Values of the longitudinal creepage lateral creepage, and spin creepage are

prl
s 47
v, =~ (47)
X,
- (48)
wDr3
—_ I3 49
P=—y (49)

Now the contact forces can be calculated.

a) Linear theory of rolling contact
The linear theory of rolling contact (Kalker, 19983sumes adhesion in the whole contact
patch. The tangential forces and the spin momerd hiaear dependence on the creepages

T, =-GabC, v, (50)
3
T, =-GabC,,v, —G(ab)2 C,4, (51)
3
M, = -G(ab)2 C,,, - G(ab)’ C.yp, (52)

Here Cy11, Cyy, Co3 = — C32 and Cs3 are Kalker’'s creepage coefficients which are dateal
numerically and tabulated (in Kalker, 1990; Johnsk®85).

b) Vermeulen & Johnson theory
While the contact forces are linearly dependentr@epages in the previous step, in reality
they saturate on value

T=1fN (53)
Therefore accordingly to the Vermeulen & Johnsaotii as presented in (Kalker, 1990) the
tangential forces calculated by the linear theoeyraodified by the following algorithm:

T-= \/'ITTyZ (54)

T
W= —0
3N (55)
— | IN[1-(1-w)’ w<l
£ N[1-(-w)] pro (56)
fN pro w>1
- T —
=XT 57
=T (57)
T
y T T (58)

Now slip is taken into account. However, the Vertaauand Johnson theory is applicable
only when spin is zero or insignificant.



c) FASTSM algorithm

The FASTSIM algorithm (Kalker, 1990; Jacobson & k&l 2000) has to be applied in order
to calculate the contact forces when spin is sicgmit. Then the contact area is discretized
and the simplified theory of contact is used. Mg/ the solution is slower, however not only
more accurate force estimation is acquired but apgmoximate pressure and slip distribution
is calculated. Only restrictions of the FASTSIM @lthm are that it can be used only for
guasiidentical bodies (bodies made of the saméalas material) and for elliptical contacts
(Kalker’'s creepage coefficients are required).

B) Non-Herzian contact

When more accurate solution is demanded, otheradsthave to be used. The contact patch
of the wheel-rail contact is often non-Hertzian r{reliptical). Then numerical methods of
estimation of both normal and tangential tractieedhto be applied.

a) CONTACT algorithm

The CONTACT algorithm created by Kalker (descriliedKalker, 1990; Jacobson & Kalker,
2000) is a method based on boundary element methddnethods of nonlinear optimization.
The expected contact area is divided into elemandsthe representation of Boussinesq and
Cerruti (Johnson, 1985; Kalker, 1990) is integratedr each element. In two stages (NORM
and TANG) the normal and tangential tractions aleudated.

Building of the influence number matrices and nmétibuilding and solving of system of

equations in both NORM and TANG algorithms is velgw and memory-consuming process
relative to the analytical solutions or the FASTSHWorithm. However, the wheel-rail

contact is often non-Hertzian, especially when flamge touches the edge of the ralil.
Advantage of the CONTACT algorithm is that moreweate pressure and slip distributions
are obtained.

b) FEA

Finite element analysis is universal method to wdate forces in the wheel-rail contact.
A great advantage is that shape of the whole wbhasl be taken into account and even
stresses inside the bodies are found. Howeverfirtiie element analysis is also the most
time- and memory-consuming method.

3.3. Equations of motion and state function

Contact forces calculated by any method are placéae coordinate system of the projection
of the rolling velocity. In order to build equat®of motion they have to be transformed into
the main coordinate system:

Fane =[Te T, NJ (59)
Men, =[0 O M,T (60)
I:con = CSP : TroI : I:con,r (61)
M con — CSP : M con,r (62)

All exterior forces and moments affecting the wkeelfrom connected bodies (springs,
dampers, resistance) are summed into force

F.=[F, F, F.] (63)

ex ey



and moment
M = |:M ex M ey M ez :|T (64)

e

Position of the contact patch relative to the eepfirgravity of the wheelset is
Feon = Xy =X :CD Xy X =X

65
r‘con :CD 'Xd ( )
The equations of motion of the wheelset are
.1
XIZE'(FCIBH-FFOEH-FFV)-FQ (66)
a=J7"(ro xFo + 18 xFR +ML +ME + M) (67)
The vector of angular acceleratiaris transformed tay , 9 a ¢:
. a,-sing-sind-a, - coy- si#+a,- co8+y -9 s+
y = (68)
cosd
. a-sing-a,-cogy+y-9+39-¢- sing
g = ’ (69)
cosd
9 = a,-cosy+a,- Siy—y-¢- cod (70)

Thus the state function
(% %% % 2,200,880 6]=t(x x %% z2zavyddes]) (7
is acquired and used for numerical integration w&ithosen method.

4. Conclusions

Simulation of the wheelset moving on rails with sigieration of the shape irregularities
requires somewhat different approach than modetgyudeal geometry. While in the ideal

case velocities of the wheels and orientation ef ¢bntact patch coincide with the main
coordinate system, in general case they can beedbtath respect to each other. Therefore all
guantities describing the system have to be tram&d to coincide with the geometry of the
contact.

Forces in the wheel-rail contact can be calculatsidg a number of different methods. It
appears from previous work of the author (Jandora.e2006) that rigid-body solutions of
the wheel-rail contact are insufficient in the caseshape irregularities. So contact of elastic
bodies needs to be assumed. Normal tractions caalbelated with the Hertz solution for
Hertzian contacts (elliptical contact patch). Tarige tractions can be solved using the linear
theory of rolling contact, the Vermeulen & Johngbeory or the FASTSIM algorithm. The
linear theory does not take into account slip e¢bntact patch, full adhesion is expected, the
Vermeulen & Johnson theory is used to calculatspio solution of the contact forces. When
spin is significant, the FASTSIM algorithm is amali For non-Hertzian contacts which
appear when the flange touches the edge of thentaiterical methods have to be used, either
the CONTACT algorithm or the finite element anatysHowever, numerical solutions are
very time-consuming in comparison to methods uskigrtzian contact assumptions.
Therefore the numerical methods should be applygwhen better accuracy of the results is
demanded.
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