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Summary: Problem of wheelset rolling on rails is commonly solved problem of 
engineering practice. Only ideal geometry of the wheelset is used in majority of 
studies to simulate its movement. However, shape irregularities appear as a result 
of wear and they have great influence on the movement. In this paper a model is 
presented which can be used to simulate wheelset motion in the three dimensional 
space. Shape irregularities are implemented into the model and diverse ways to 
calculate the contact forces are presented and compared with respect to accuracy 
of results they provide and their demands on computer equipment.  

1. Introduction 

Problem of wheelset rolling on rails is commonly solved problem of engineering practice. The 
goal of plenty of studies published on this theme is to achieve minimisation of wear of both 
wheels and rails. Other studies investigate problem of vibration and noise brought on railway 
vehicles by corrugation of wheels and rails. 

Most common models used for studying three dimensional movements of wheelsets  as 
presented in (Dukkipati, 2000; Iwnicki, 2006; Svigler & Vimmr, 2006) do not consider 
influence of corrugation, only ideal geometry is used. However, shape irregularities appear as 
a result of wear and they have great influence on the wheelset movement. Other studies (as  
K. Knothe’s contribution to (Jacobson & Kalker, 2000) use only two-dimensional models for 
modelling of corrugation on rails or out-of-round wheels.  

However, both real wheelset motion and shape irregularities of wheels and rails have great 
influence on railway vehicle dynamics. In this paper a model is presented which can be used 
to simulate wheelset movement in the three dimensional space. Shape irregularities are 
implemented into the model and diverse ways to calculate the contact forces are presented. 

2. Coordinate systems 

Main coordinate system is connected to the rails. The x-axis is tangential to the centreline of 
the rails, the y-axis lies in direction of placing of the sleepers and the z-axis is normal to the 
plane of rails. Another coordinate system is connected to the wheelset. This one can have 
Cartesian or cylindrical representation and both use the same yd-axis which is oriented along 
the wheelset axis. The other two axes (xd, zd) are normal to the yd-axis and can be represented 
in cylindrical dimensions Rd and αd.  
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Relation between the main coordinate system and the wheelset coordinate system is described 
with use of three angles (see fig. 1): 
 ψ – angle between the wheelset axis projection into the ground plan and the main y-axis, 
 ϑ – angle between the wheelset axis and the horizontal plane, 
 φ – immediate value of the wheelset rotation. 
These angles are similar to Euler angles so they determine the transformation matrix from the 
wheelset coordinate system into the main coordinate system. 
 ( ), ,D D ψ ϑ ϕ=C C  (1) 

The wheelset is moving so the matrix of angular velocity ΩD is defined: 
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Position and velocity of the centre of gravity of the wheelset is  
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a) Top view b) Front view 
Fig. 1. Position of the wheelset in the main coordinate system 

3. Wheel-rail contact 

Contact of each wheel-rail pair on the left side or on the right side is solved separately. Each 
one has its geometry described with its own functions and contact forces are calculated for 
either pair. However, the algorithm is same for both sides so it is not presented separately. But 
it has to be expressed, that the following calculations have to be followed through for both left 
and right wheel-rail contact pair.  

3.1. Geometry 

Shape of the wheel is described with the function R (fig. 2) which is the sum of the ideal 
wheel shape Rid and the shape irregularities Rirr: 
 ( ) ( ) ( ), ,d d id d irr d dR y R y R yα α= +   (5) 



 

 
Fig. 2. Example of the wheel with shape irregularities 

 
Function of the rail surface N (fig. 3) is sum of the actual deflection of the rail Nd,t, the ideal 
shape of the rail Nid (including placement of the rail under the 1:20 or 1:40 angle) and the 
corrugation Nirr  
 ( ) ( ) ( ) ( ),, , ,d t id irrN x y N x N x y N x y= + +  (6) 

 
Fig. 3. Example of the rail with corrugation 

 
Function of distance between the wheel and the rail ( ),d dh h yα=  is fundamental for solving 

the contact forces. Point of the wheel surface in the wheelset Cartesian coordinate system is 

 [ ]cos sin
T
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In the main coordinate system it is 
 w D d L= ⋅ +x C x x  (8) 
The normal to the surface is found as 
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Point of the rail surface is defined as  
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These equations mean that the point of interest lies on the normal of the wheel surface in 
unknown distance h. This distance is found by solving the nonlinear equation 
 ( ) ( ), ,3 ,30 cos w w rh n x x hϑ= − ⋅ + −  (11) 

Thus the distance ( ),d dh yα  for every point of the wheel surface can be found.  

3.2. Contact forces  

When solving the contact forces in the wheel rail contact, two different approaches can be 
used. It can be assumed that the contact patch is in the shape of ellipse or that the contact 
patch has a general shape.  
 
A) Hertzian contact 
Hertz theory of contact (Hertz, 1881) assumes that the contact patch is elliptic. Minimum of 
the distance function ( ),d dh yα  can be found with the simplex method. It can be greater than 

zero (then there is a gap between the wheel and the rail) or less than zero (then the wheel and 
the rail are in contact and deformed). In the extreme the centre of the contact ellipse is 
expected. In order to find the contact forces three steps have to be completed – principal 
coordinate system and principal curvatures of the contact patch have to be found and then 
normal and tangential forces have to be calculated. 
 
1) Principal coordinate system and principal curvatures of the contact patch 
Algorithm of finding principal coordinate system and principal curvatures of surface is 
described in (Budinsky, 1983). Points of the surface xs are functions of two parameters u1 and 
u2 
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Tangential vectors of the surface are 

 ,
,

s i
j i

j

x
t

u

∂
=
∂

 1, 2, 3; 1, 2i j= =  (13) 

Normal vector of the surface is 
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Matrix G of the first fundamental form of the surface is 
 ij i jG = ⋅t t  1, 2; 1, 2i j= =  (15) 

Matrix H of the second fundamental form of the surface is 
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Principal curvatures Cv of the surface are eigenvalues of the matrix 1−
⋅H G  and they can be 

solved using equation 
 ( )1 0vC−

⋅ − ⋅ ⋅ =H G I w  (17) 

Outputs of the eigenvalue algorithm are matrices Cv (eigenvalues) and W (eigenvectors) 
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Using the eigenvectors and tangential vectors of the surface two principal directions of the 
surface are found 
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Principal coordinate system of the surface is created from properly arranged principal vectors 
of the surface and the normal of the surface  

 ,1 ,2PS p p =  C t t n  (21) 

Function of the surface of the wheel (in the wheelset coordinate system) is 
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where αd and yd are the parameters of the surface. Function of the surface of the rail (in the 
main coordinate system) is 

 ( ),rx x y N x y=     (23) 

where x and y are the parameters of the surface. By following the presented algorithm 
principal coordinate system of the wheel CPS,W and principal coordinate system of the rail 
CPS,R is obtained. 
Undeformed distance of surfaces is generally 
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However, the middle term ( )1 2 1 2C C x x+  has zero value in the Hertz theory of contact. 

Therefore both principal coordinate system of the wheel and principal coordinate system of 
the rail have to be rotated into the common principal coordinate system where the term 
( )1 2 1 2C C x x+  vanishes (Kalker, 1990).  



Both surfaces have common normal and they are rotated against each other by angle ε. The 
angle by which coordinate system of the wheel has to rotate into the common principal 
coordinate system is 
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and the angle of rotation from principal coordinate system of the rail into the common 
principal coordinate system is 
 r wε ε ε= −  (26) 
Thus the transformation matrices are  
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The common principal coordinate system is then 
 , ,PS PS w w PS r r= ⋅ = ⋅C C T C T  (31) 

 
2) Hertzian normal force 
Undeformed distance of the surfaces in contact according to the Hertz theory of contact as 
presented in (Johnson, 1985; Kalker, 1990; Jacobson & Kalker, 2000) is in the form of 
 2 2
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Constants D1,1 and D2,2 are common principal curvatures acquired from 
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 1,1 2,2

1,1 2,2

cos ax

D D
t

D D

−
=

+
 

The value cos axt  is input into the axial function  
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where functions C, D and E are complete elliptic integrals (see Kalker, 1990). From the axial 
function excentricity m of the contact ellipse is acquired. Then, according to the common 
principal curvatures D1,1 and D2,2, ratio of squares of the half-axes of the contact ellipse is 
found 
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Another elliptic integrals, K and E are required: 
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The normal force is then 
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and half-axes of the contact ellipse are 
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G is the modulus of rigidity and µ is the Poisson’s ratio. 
 
3) Tangential forces  
Tangential forces in the contact ellipse can be solved in different ways. Three of them are 
described below. Each of them requires the rolling velocity to be known. The  
x-component of the wheelset velocity can be considered the rolling velocity: 

 [ ]0 0
T

rol tx=v �  (39) 

The contact patch has different orientation than the main coordinate system so projection into 
the plane of the contact patch is needed 
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Magnitude of the rolling velocity is 
 ,rol rV = v  (41) 

Rolling contact theories assume the x-axis of the contact patch is identical with the direction 
of the rolling velocity; therefore the common principal coordinate system of the contact patch 
has to be once again rotated by the angle εrol 
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Velocity of the point of the wheel which is the centre of the contact ellipse is 
 w D D d t= ⋅ ⋅ +x Ω C x x� �  (44) 



Angular velocity of the wheelset is ωD (from eq. 2).  In order to calculate the contact forces 
they have to be transformed into the coordinate system of the projection of the rolling 
velocity: 
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The rail is not moving so these values are the rigid slip and the rigid spin in the contact patch. 
Values of the longitudinal creepage υx, lateral creepage υy and spin creepage φz are 
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Now the contact forces can be calculated. 
 
a) Linear theory of rolling contact 
The linear theory of rolling contact (Kalker, 1990) assumes adhesion in the whole contact 
patch. The tangential forces and the spin moment have linear dependence on the creepages  
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Here C11, C22, C23 = – C32 and C33 are Kalker’s creepage coefficients which are calculated 
numerically and tabulated (in Kalker, 1990; Johnson, 1985).  
 
b) Vermeulen & Johnson theory 
While the contact forces are linearly dependent on creepages in the previous step, in reality 
they saturate on value 
 T fN=  (53) 
Therefore accordingly to the Vermeulen & Johnson theory as presented in (Kalker, 1990) the 
tangential forces calculated by the linear theory are modified by the following algorithm: 
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Now slip is taken into account. However, the Vermeulen and Johnson theory is applicable 
only when spin is zero or insignificant.  
 



c) FASTSIM algorithm 
The FASTSIM algorithm (Kalker, 1990; Jacobson & Kalker, 2000) has to be applied in order 
to calculate the contact forces when spin is significant. Then the contact area is discretized 
and the simplified theory of contact is used. This way the solution is slower, however not only 
more accurate force estimation is acquired but also approximate pressure and slip distribution 
is calculated. Only restrictions of the FASTSIM algorithm are that it can be used only for 
quasiidentical bodies (bodies made of the same or similar material) and for elliptical contacts 
(Kalker’s creepage coefficients are required). 
 
B) Non-Herzian contact 
When more accurate solution is demanded, other methods have to be used. The contact patch 
of the wheel-rail contact is often non-Hertzian (non-elliptical). Then numerical methods of 
estimation of both normal and tangential traction need to be applied. 
 
a) CONTACT algorithm 
The CONTACT algorithm created by Kalker (described in Kalker, 1990; Jacobson & Kalker, 
2000) is a method based on boundary element method and methods of nonlinear optimization. 
The expected contact area is divided into elements and the representation of Boussinesq and 
Cerruti (Johnson, 1985; Kalker, 1990) is integrated over each element. In two stages (NORM 
and TANG) the normal and tangential tractions are calculated.  

Building of the influence number matrices and multiple building and solving of system of 
equations in both NORM and TANG algorithms is very slow and memory-consuming process 
relative to the analytical solutions or the FASTSIM algorithm. However, the wheel-rail 
contact is often non-Hertzian, especially when the flange touches the edge of the rail. 
Advantage of the CONTACT algorithm is that more accurate pressure and slip distributions 
are obtained. 
 
b) FEA 
Finite element analysis is universal method to calculate forces in the wheel-rail contact.  
A great advantage is that shape of the whole wheel can be taken into account and even 
stresses inside the bodies are found. However, the finite element analysis is also the most 
time- and memory-consuming method. 

3.3. Equations of motion and state function 

Contact forces calculated by any method are placed in the coordinate system of the projection 
of the rolling velocity. In order to build equations of motion they have to be transformed into 
the main coordinate system: 
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All exterior forces and moments affecting the wheelset from connected bodies (springs, 
dampers, resistance) are summed into force  
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and moment  
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Position of the contact patch relative to the centre of gravity of the wheelset is 
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The equations of motion of the wheelset are 
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The vector of angular acceleration α is transformed to ψ�� , ϑ��  a ϕ�� : 
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Thus the state function  
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is acquired and used for numerical integration with a chosen method. 

4. Conclusions 

Simulation of the wheelset moving on rails with consideration of the shape irregularities 
requires somewhat different approach than models using ideal geometry. While in the ideal 
case velocities of the wheels and orientation of the contact patch coincide with the main 
coordinate system, in general case they can be rotated with respect to each other. Therefore all 
quantities describing the system have to be transformed to coincide with the geometry of the 
contact. 

Forces in the wheel-rail contact can be calculated using a number of different methods. It 
appears from previous work of the author (Jandora et al., 2006) that rigid-body solutions of 
the wheel-rail contact are insufficient in the case of shape irregularities. So contact of elastic 
bodies needs to be assumed. Normal tractions can be calculated with the Hertz solution for 
Hertzian contacts (elliptical contact patch). Tangential tractions can be solved using the linear 
theory of rolling contact, the Vermeulen & Johnson theory or the FASTSIM algorithm. The 
linear theory does not take into account slip in the contact patch, full adhesion is expected, the 
Vermeulen & Johnson theory is used to calculate no spin solution of the contact forces. When 
spin is significant, the FASTSIM algorithm is applied. For non-Hertzian contacts which 
appear when the flange touches the edge of the rail, numerical methods have to be used, either 
the CONTACT algorithm or the finite element analysis. However, numerical solutions are 
very time-consuming in comparison to methods using Hertzian contact assumptions. 
Therefore the numerical methods should be applied only when better accuracy of the results is 
demanded. 
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