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Summary: The energy conjugate measures of stress and strain enter any 
constitutive relation for the material behaviour description. There are many strain 
measures in common use, several of them discussed in the text. The main aim of 
the contribution is to focus on the derivation of a general energy conjugate stress 
tensor corresponding with a general Lagrangean strain tensor. 

 

1. Introduction 

The Cauchy stress tensor and the symmetric part of the velocity gradient enter the formula for 
the stress power. This takes place in the area of so-called current configuration. Whenever 
a problem of non-linear geometry is formulated in continuum mechanics, either the total or 
the updated Lagrangean formulation is used, therefore, the stress power is expressed in the 
referential configuration. Stress and strain measures are considered to be energy conjugate if 
obeying equality (Khan & Huang, 1995) 
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where σ  is the Cauchy stress tensor, D  the symmetric part of velocity gradient, E  a general 
Lagrangean strain tensor, Σ  a general energy conjugate stress tensor with respect to E , V the 
volume in the current configuration, and V0 the volume in the referential configuration. The 
time rate on the right side of equation (1) is essential. It can be proved that for instance the 
second Piola-Kirchhoff stress and the Green-Lagrange strain tensor are energy conjugate as 
well as the first Piola-Kirchhoff stress tensor and the deformation gradient. 

In case of small deformation, neither the total nor the updated Lagrangean formulation is 
necessary to be performed. The theory of linear continuum is used in these cases and it is 
assumed there is a negligible difference between the current and the referential configuration. 
Only in such a case the Cauchy stress tensor and the infinitesimal strain tensor are 
approximately considered to be conjugate, although there is definitely no energy conjugate 
strain tensor corresponding with the Cauchy stress tensor. 
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2. Various strain measures 

It is possible to define an arbitrary measure of strain. The only thing that must be present in 
measure definitions is the deformation gradient F or the displacement gradient Z. The most 
known are for instance the Green-Lagrange strain tensor 
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where I  is the identity tensor, the infinitesimal strain tensor 
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and the Lagrangean Hencky strain tensor, denoted also as right Hencky strain tensor, 
discussed in (Plešek & Kruisová, 2006), 
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The behaviour of these quantities in 
the dependence on the stretch for the 
one dimensional tensile-compression 
test is depicted in the Figure 1. The 
stretch is greater than one for tensile 
and less than one for compression. 
Hypothetically, when equal to zero, the 
material is totally compressed, and its 
volume is equal to zero. The stretch 
can never gain value less than zero. 

The linear character of the 
infinitesimal strain tensor is well 
perceptible. It is the linear part of the 
Green-Lagrange strain tensor as arised 
from equations (2) and (3). 

However, the Green-Lagrange strain tensor is quite suitable to describe large rotations and 
the right Hencky strain tensor due to its logarithmic character seems to be suitable for the 
large displacements and large stretches description. 

 

3. Derivation of a general energy conjugate stress tensor with respect to an arbitrary 
Lagrangean strain tensor 

As mentioned above, the second Piola-Kirchhoff stress S and the Green-Lagrange strain 
tensor e are energy conjugate. Therefore, the equality of conjugation has to obey 
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satisfying all mathematical conditions also 
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Figure 1  Various strain measures – 1D tensile-
compression test 



EΣeS && :: = . (6) 

Defining the Cauchy-Green strain tensor as 
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a meaningful relation of time rates between the Green-Lagrange and the Cauchy-Green strain 
tensor is of form 
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and the formulation (6) changes into 

EΣCS && ::
2
1 = . (9) 

The Cauchy-Green strain tensor can be spectrally decomposed 

T2
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and its time rate is of form 
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in eigen components 
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It is evident that symmetric Λ&  and skewsymmetric Q&  second order tensor can be 
established 
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Following system of equation yields from (12) and (13) 
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Analogous to the relation (10) a general strain tensor can be also spectrally decomposed 
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where ( )Λf  is an arbitrary function of principal stretches suitable for a considered type of 
deformation. The rate of a general strain tensor in generalized and in eigen components is of 
form 
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According to (15), (16) and (17) an analogical system to (14) is obtained 
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Comparing systems (14) and (18), the transformation relation between the Cauchy-Green 
and a general strain tensor is derived (Hrubý, 2006) 
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Substituting from (19), the equation (9) is modified 
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Finally, assuming the generalized components instead of the eigen ones, the relations for 
a general energy conjugate measure of stress are obtained 
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The disadvantage of the presented derivation is that the final form (21) can be expressed in 
tensor components only and that the second Piola-Kirchhoff stress tensor is necessary to be 
determined. Nevertheless, the universal character of relation (21) is indisputable. 



4. Conclusion 

An attempt at the derivation of explicit Cartesian components of a general energy conjugate 
stress tensor with respect to an arbitrary Lagrangean strain tensor has been made. Such 
a couple of stress and strain measures should enter any constitutive model in non-linear 
continuum mechanics based on either the total or the updated Lagrangean formulation. 
The measures of strain are expressed in the referential configuration in these cases. 
Constitutive equations cast in the framework of Eulerian description may be obtained via the 
Doyle-Ericksen formula (Doyle & Ericksen, 1956). 
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