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ENERGY CONJUGATE MEASURES OF STRESS
AND STRAIN IN CONTINUUM MECHANICS

Z. Hruby !, J. Plesek

Summary: The energy conjugate measures of stress and strain enter any
constitutive relation for the material behaviour description. There are many strain
measures in common use, several of them discussed in the text. The main aim of
the contribution is to focus on the derivation of a general energy conjugate stress
tensor corresponding with a general Lagrangean strain tensor.

1. Introduction

The Cauchy stress tensor and the symmetric pdineofelocity gradient enter the formula for
the stress power. This takes place in the area-ahled current configuration. Whenever
a problem of non-linear geometry is formulated amttnuum mechanics, either the total or
the updated Lagrangean formulation is used, thexetbe stress power is expressed in the
referential configuration. Stress and strain messare considered to be energy conjugate if
obeying equality (Khan & Huang, 1995)
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where e is the Cauchy stress tens@,the symmetric part of velocity gradier, a general
Lagrangean strain tensax, a general energy conjugate stress tensor witlecespE , V the
volume in the current configuration, aMd the volume in the referential configuration. The
time rate on the right side of equation (1) is aiaé It can be proved that for instance the
second Piola-Kirchhoff stress and the Green-Lagrasticpin tensor are energy conjugate as
well as the first Piola-Kirchhoff stress tensor dnel deformation gradient.

In case of small deformation, neither the total th@ updated Lagrangean formulation is
necessary to be performed. The theory of lineatimonm is used in these cases and it is
assumed there is a negligible difference betweerctinrent and the referential configuration.
Only in such a case the Cauchy stress tensor aedinfimitesimal strain tensor are
approximately considered to be conjugate, althotngine is definitely no energy conjugate
strain tensor corresponding with the Cauchy stierssor.

! Ing. Zbyrek Hruby, Institute of Thermomechanics AS CR, Dolejgk 5, 182 00 Praha 8, Czech Republic;
tel.: +420 266 053 441, fax: +420 286 584 695, d:rphynek@it.cas.cz

% Ing. Jii PleSek, CSc., Institute of Thermomechanics AS D#lejskova 5, 182 00 Praha 8, Czech Republic;
tel.: +420 266 053 213, fax: +420 286 584 695, d:mpkesek@it.cas.cz



2. Various strain measures
It is possible to define an arbitrary measure wdist The only thing that must be present in

measure definitions is the deformation gradiendr the displacement gradiert The most
known are for instance the Green-Lagrange straisote
_1(cTE_(]=1 T, 5T
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wherel is the identity tensor, the infinitesimal stragmsor

e=1(z+27) 3)

and the Lagrangean Hencky strain tensor, denoted a$ right Hencky strain tensor,
discussed in (PleSek & Kruisova, 2006),

h=1in[ETF). (@)
20 The behaviour of these quantities in
' . the dependence on the stretch for the
10 ._'.:+:r one dimensional tensile-compression
= nlll!!nﬂu“ test is qleplcted in the Figure 1. Th_e
£ 00 ) . stretch is greater than one for ten_sne
= ...-::ggl!!!" and less than one for compression.
-1.0 feett—ut Hypothetically, when equal to zero, the
M material is totally compressed, and its
2.0 —* volume is equal to zero. The stretch
0.0 0.5 1.0 15 2.0 can never gain value less than zero.

stretch [1] The linear character of the

| = Green-Lagrange e infinitesimal & Hencky| infinitesimal strain tensor is well
perceptible. It is the linear part of the
Green-Lagrange strain tensor as arised
from equations (2) and (3).

Figure 1 Various strain measures — 1D tensile-
compression test

However, the Green-Lagrange strain tensor is quitiable to describe large rotations and
the right Hencky strain tensor due to its logarithrcharacter seems to be suitable for the
large displacements and large stretches description

3. Derivation of a general energy conjugate stress teor with respect to an arbitrary
Lagrangean strain tensor

As mentioned above, the second Piola-Kirchhoffssti® and the Green-Lagrange strain
tensore are energy conjugate. Therefore, the equalityoafugation has to obey
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satisfying all mathematical conditions also



S:é=X:E. (6)
Defining the Cauchy-Green strain tensor as
C=F'F, (7)

a meaningful relation of time rates between thee@Gtieagrange and the Cauchy-Green strain
tensor is of form

e=1C (8)

N[

and the formulation (6) changes into
1s:C=x:E. (9)

The Cauchy-Green strain tensor can be spectratigrdposed

C=0®A’®’ (10)
and its time rate is of form
C=DA’D" + D2AADT + DA’DT, (11)
in eigen components
C=®"CO=0"DA%2 +2AA +A’°D D (12)

It is evident that symmetricA and skewsymmetridQ second order tensor can be
established

A 0 0 0 -Q Q
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Following system of equation yields from (12) ada@)

/ilzclll, /12:022', /13=C3»3',
(14)
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Analogous to the relation (10) a general straisoercan be also spectrally decomposed
E=0f(A)DT, (15)

wheref(A) is an arbitrary function of principal stretchestable for a considered type of

deformation. The rate of a general strain tens@eineralized and in eigen components is of
form



E=®f(A)o" +of(A)AdT +@f(A)dT, (16)

E=0E®=0"df(A)+f(A)A+f(A)DTD. (17)
According to (15), (16) and (17) an analogical sgsto (14) is obtained
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Comparing systems (14) and (18), the transformatedation between the Cauchy-Green
and a general strain tensor is derived (Hruby, 2006
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Substituting from (19), the equation (9) is modifie
1 [ J— |f(/1) o 1 - -
%S] C” _ZIIZAIJCIJ ............... =7,
(h)-11;) =
1~ [ |f /1| _f A] - f . .
%Sj Cij'= 2j; MC” ...... N

Finally, assuming the generalized components idstdathe eigen ones, the relations for
a general energy conjugate measure of stress tamed

(21)
A=A
MEDED
2f (A) -4
The disadvantage of the presented derivation isthieafinal form (21) can be expressed in

tensor components only and that the second PialehKoff stress tensor is necessary to be
determined. Nevertheless, the universal charattelation (21) is indisputable.




4. Conclusion

An attempt at the derivation of explicit Cartes@mponents of a general energy conjugate
stress tensor with respect to an arbitrary Lagranggrain tensor has been made. Such
a couple of stress and strain measures should anterconstitutive model in non-linear
continuum mechanics based on either the total er updated Lagrangean formulation.
The measures of strain are expressed in the reéfreconfiguration in these cases.
Constitutive equations cast in the framework ofefiah description may be obtained via the
Doyle-Ericksen formula (Doyle & Ericksen, 1956).
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