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HICH ORDER GEOMETRICAL AND FUNCTIONAL
DISCRETIZATION FOR THE NAVIER-STOKES
EQUATIONS

B. Horeni*, Z. Chara *

Summary: The accuracy of numerical solution of fluid dynamic tasks
depends on both the geometrical and functional discretization. The paper
deals with an applicability of high order methods for geometrical as well
as functional approzimations. Usefulness of this approach is demonstrated
on selected examples.

Geometrical discretization

Geometrical discretization using the linear elements (with the straight edges in 2D geometry
or the planar faces in 3D one) subjects to some restrictions. A dense mesh is required in a
neighborhood of the curved walls even if a solution is considerably smooth. The smoothly
curved walls can be modeled with the straight edges (2D case) or the planar faces (3D case)
with second—order accuracy. To improve the accuracy, a high order approximation of the
curved walls is required.

We now use the mapping of plane u, v to plane x,y in the form

r(z,y) = Rm = Zriu”"v‘“ =Py +PiU+PoU + P3uv + ..., (1)
i

where R is a set of constant vectors
R: [7“[],’)“1,’)“2,’)"3,... . (2)
Jacobian is given by

D= (0r/0ux 0r/ov)ok = [0r/0u,0r/0v]
i’j
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Figure 1: Quadratic mapping of a standard triangle.

With a simple algorithm it is possible to rewrite the Jacobian to the form
D=Dm =Dy+ Diu+ Dyv+ Dyuv + ...+ D;uPiv? +.... (4)
For a linear mapping it follows that
r(z,y) =10 + U+ TV, (5)
the Jacobian is a simple scalar constant Dy
D =Dy=(ry xry)ok =1[r;,ry. (6)

For a quadratic mapping (Fig.1)

r(z,y) = 1o+ Tiu+ Tov + T3UV + ru® + ryv? (7)
we obtain
D = Dy + Dyu + Dov + Dyuv + Dyu® + Dsv” (8)
where
Dy = [ri,7,
Dy = [ri,ms]+2[ry, o],
Dy = 2[ry, 75|+ [r3, T2,
D3 = Adfry,rs),
Dy = 2[ry,ms],
Ds = 2[rs, ;). (9)

Mapping of an order n has (n + 1)(n + 2)/2 coefficients and its corresponding Jacobian
n(2n — 1) coefficients. Some restricted mappings are useful. For example a bilinear mapping
r(z,y) = ro + riu + rov + ryuv transforms a standard triangle with vertices (0,0), (1,0)
and (0,1) to a common triangle with two straight edges and one curvilinear edge, or unit
square with vertices (0,0), (1,0), (1,1) and (0,1) to a common quadrilateral.



Functional discretization

The increasing of a polynomial degree of functional discretization improves the quality of
the smooth solution. Using an orthogonal basis will leave out an inversion of the mass
matrix. Another, perhaps more important, advantage, is that an orthogonal basis makes
the modification of a polynomial degree trivial [17]. In the following a process, how to
sequentially introduce a set of monomials u”v? into an orthonormal basis will be described.
We use set of monomials

m = [1,u,v,uv, u?, v*, u?v, uwo? u v* . uPiet T (10)

To generate a sequence of orthonormal polynomials from the generating set of monomials
uPv? we use an algorithm equivalent to the Gram—Schmidt process which transforms a given
set of n input vectors a;,7 = 1,...,n to a set of n orthonormal vectors e; spanning the same
vector space. The procedure is outlined in an algorithm

1. e <—a1/Ha1||
2. Fori=2,...,n

i—1
(a) a; < a;—> " (ai, ;) e,
(b) ei < ai/l|lail
In step 2a of this algorithm, the +—th input vector is replaced by its orthogonal component to
a vector space spanned by the first i — 1 orthonormal vectors, thus by the difference between
a vector and its projection to a sub—space.
An equivalent procedure can be applied to polynomial functions on the canonical elements

(unit square or standard triangle) to transform a given set of monomials m; to a set of
orthonormal polynoms FE;

1. E[] (—m0/||m0||
2. Fori=1,....n

i—1
(a) Ez — m; — Z (mi, E]) Ej

J=0

(b) Ei «+ Ei/| Eill

If a mapping is linear, we can obtain a universal orthonormal basis, such as for any
triangle with straight edges in the following form

VirLrlE = V2,

Vir,r|Ey = —2+46u,

VirL ) By = 2V3 (=1 +u+2v),

VIrirlEs = 3/2/7(1 — 4u — 40 + 20uw) , . .. (11)



where [r1, 7] is a simple scalar constant , the Jacobian Dy = (71 X 73) o k = [ry, 79| .

For a nonlinear mapping of a canonical element we obtain unique set of orthonormal
functions for each curvilinear element.

This is illustrated in Fig.2 where several functions E; are shown (all functions are up to
degree 5 except constant function FEjp). It is clear that the high order methods enable to
approximate the solution inside the element in much more detail.

Artificial compressibility method

Navier-Stokes equations of an unsteady flow of a compressible liquid are a system of mixed
hyperbolic—parabolic type. For an incompressible liquid the equations form a system of
elliptic-parabolic type. The primary difficulty in solving the incompressible flow in primitive
variables stems from the lack of time derivative in continuity equation. Most of the methods
require a solution of Poisson equation for coupling between the velocity and the pressure
field in each step. This requirement is poorly satisfied in robust and effective numerical
methods where balance of mass, momentum and energy are used. But there is a possibility
how this disadvantage can be overcome.

The method is known as the artificial compressibility or pseudo—compressibility method
and was first introduced in [6]. In this formulation a time derivative of pressure is added to
the continuity equation. With the momentum equations we obtain a hyperbolic system with
artificial pressure waves of finite speed which can be solved in pseudotime to divergence—
free steady—state solution. As a consequence of this many of efficient and well developed
compressible flow algorithms can be used for this method. Using subiteration in pseudotime
can the method extended to solve time dependent problems [19, 2|.

Following the artificial compressibility formulation, a time derivative of pressure p is
added to the compressibility equation

dp Ov,  Ovy
i — Y\ = 12
8t+ﬁ<8x+8y> 0 (12)

where [ is known as the pseudo—compressibility constant which is linked with an artificial
sound velocity a by the relation 3 = 1/a? [1].

The equations for incompressible viscous flow are presented here in nondimensional form
for T = 2/L, y = y/L, Uy = v2/Vie, Uy = vy/Veo, D = 0/(pVE), t = tVao/L, M, = Vio/a
and Re,, = VL /vs. Here t represents the pseudo-time and is not related to physical time.
Combining the momentum equations for the incompressible Navier-Stokes equations with
equation (12) results in system

a_U+aF$+%—
ot ox oy

0, (13)

where U is vector of variables
U= [ﬁ,ﬁx,ﬁy]T, (14)



14 (4)

18 (5)

Figure 2: Orthonormal basis on a canonical triangle. In brackets is degree of orthonormal
polynom.



Vectors of flow components in directions of co-ordinates F', and F', are

Uy /M2 vy /M,
Fo= D47 —Tw |, Fy=|7070,~Tp |, (15)
555531 - ?:vy 612/ +D— ?yy

and components of symetric shear stress tensor 7 are

Tow = 2 (200,/0T — 00,/07) [ Res,
Ty = 3 (20v,/0y — 00,/0T) | Res, (16)
ny = (6@/8@ + 6511/85) /Reoo'

To solve the equation (13) a discontinuous Galerkin method was used. The discontinuous
Galerkin method is especially a highly compact formulation that provides a method for
obtaining a high accuracy solution on the unstructured grids [12, 3]. Since solutions of the
incompressible equations do not have strong discontinuities (shocks), it is possible solving
without need for any limiting and high order methods could be used in whole flow field.
More detail description of this method can be found in [11].

Numerical results

The code was tested for some laminar flow cases. The cases were chosen because they have
been studied previously by others numerically or experimentally.

Driven cavity flow

Flow in 2-D square cavity provides a good test case if there no primary flow direction and
the boundary conditions are very simple. This geometry has been used as a validation case
by several authors [8, 21, 13, 18, 5] The above described method has been tested for a wide
range of Reynolds numbers, Re with a polynomial degree of approximation up to seven. For
Reynolds numbers up to 5000 the results practically coincide with data already published.
Therefore we focus on a recently controversial case for Re = 10000.

For a long time the scientific discussion on the cavity flow for Reynolds number Re =
10000 was divided into two questions - is the flow field inside the cavity stationary or not.
Some works report stable solutions until this value [8, 21, 15, 16]. But recent works [4, 5]
assert, that the flow field is not stable at Re = 10000 and the first Hopf bifurcation occurs
around Re = 8000. The calculations were performed on relatively dense computational grids
512 x 512 to 2048 x 2048 [5].

In the following section we present the results of the high order method but on much more
sparse grids. In Fig.3 there is shown a plot of time series of velocity v, inside a monitoring
point for the grid 10 x 10 elements for a different degree of functional approximation. It is
evident that for using the high degree orthonormal polynoms the solution is less damped
and becomes periodical.
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Figure 3: Horizontal velocity history at monitoring point (0.15,0.85). Rectangular cavity at
Re = 10000. Grid 10 x 10, functional approximation degree 3 to 5.
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Figure 4: Horizontal velocity history and phase portrait at monitoring point (0.14,0.78).
Rectangular cavity at Re = 10000. Grid 20 x 20, functional approximation degree 4.

If the grid is denser, say 20 x 20 elements, nearly steady periodical solution is obtained
with orthogonal polynoms of four degree. The polynoms of higher order gives a very similar
solution. It is clear that the high order functional approximation allows to describe an
instability of flow field even for a very coarse grid of elements.

Flow over a circular cylinder

As an example of an external flow problem, the flow over 2—D circular cylinder was calculated.
The code was run for inviscid and laminar—flow test cases.

The accuracy of the geometrical discretization and the efficiency of the solution are
tested for the Euler equations of flow past a circular cylinder. A series of grids consisting of
a different number of the triangular and isoparametric elements — linear or quadratic — have
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Figure 5: Euler equations of 2D flow past a circular cylinder. Linear approximation of a
boundary (120 boundary elements, left) and quadratic approximation of a boundary (36
boundary elements, right).

been generated to study convergence of the discontinuous Galerkin method of various order.
The Riemann flux on cell boundaries is approximated by a simple and robust, but more
dissipative, Lax—Friedrichs type flux [14, 22] of the form

Q@) on = L[F(Q) + F@)]on ~ 5(@; - Q). a7)

where )\ is greater than a maximum of the absolutes of the eigenvalues of dF'/dQ. We can
consider the second term of F approximation as a numerical viscosity, which is not present
in Euler equations, but is required for the stability of numerical solution. Simultaneously
there is necessity to reduce — as it is possible — an influence of this term in the solution.

As can be seen in Fig. 5, linear geometric approximation of a boundary leads to wrong
artificial vortices downstream the cylinder even if a number of the boundary elements is
relatively high. On the other hand the quadratic approximation provides good results even
for a relatively low number of the boundary elements.

The above mentioned behaviour is intensified if the high order functional approximation
is used. In such case the linear approximation of curved boundary can totally devalue
the results. To successfully apply the high order functional approximation a high order
approximation of the curved walls is required.

As an example of the solution of the Navier-Stokes equations a pressure field for Re = 5
is shown in Fig. 6. The calculated values of pressure coefficients ¢, at the front and rear
stagnation points are ¢,y = 1.88 and ¢,, = —1.07. Even if the coarser grid of 357 elements
is used the results are well comparable with data in [7] (¢,; = 1.872 and ¢,, = —1.044) and
[19] (¢py = 1.847 and ¢, = —1.067).

Another results that were obtained by this approach can be found in [9, 10] for Reynolds
numbers up to 200000. The calculated flow field reasonably well correspond with available
experimental data (e.g. [20]).



Figure 6: Pressure coefficient field ¢, = p — ps/0.5pV2 of 2D flow past a circular cylinder
for Re = 5. Quadratic approximation of a boundary, orthonormal polynoms degree 4, mesh
of 357 elements.

Conclusions

This paper shows that the application of the high order methods gives a very good results
even on coarse grids. Another aspect is that the possibility to describe the flow instability
more precisely was confirmed. This is very important for the numerical solution in a range
of the Reynolds numbers when the transition from laminar to turbulent flow can occur.
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