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Summary: The a

ura
y of numeri
al solution of 
uid dynami
 tasksdepends on both the geometri
al and fun
tional dis
retization. The paperdeals with an appli
ability of high order methods for geometri
al as wellas fun
tional approximations. Usefulness of this approa
h is demonstratedon sele
ted examples.Geometri
al dis
retizationGeometri
al dis
retization using the linear elements (with the straight edges in 2D geometryor the planar fa
es in 3D one) subje
ts to some restri
tions. A dense mesh is required in aneighborhood of the 
urved walls even if a solution is 
onsiderably smooth. The smoothly
urved walls 
an be modeled with the straight edges (2D 
ase) or the planar fa
es (3D 
ase)with se
ond{order a

ura
y. To improve the a

ura
y, a high order approximation of the
urved walls is required.We now use the mapping of plane u; v to plane x; y in the formr(x; y) = Rm =Xi riupivqi = r0 + r1u+ r2v + r3uv + : : : ; (1)where R is a set of 
onstant ve
torsR = [r0; r1; r2; r3; : : :℄ : (2)Ja
obian is given byD = (�r=�u� �r=�v) Æ k = [�r=�u; �r=�v℄= Xi;j [ri; rj℄ piqju(pi+pj�1)v(qi+qj�1) : (3)�Institute of Hydrodynami
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Figure 1: Quadrati
 mapping of a standard triangle.With a simple algorithm it is possible to rewrite the Ja
obian to the formD = Dm = D0 +D1u+D2v +D3uv + : : :+Diupivqi + : : : : (4)For a linear mapping it follows thatr(x; y) = r0 + r1u+ r2v ; (5)the Ja
obian is a simple s
alar 
onstant D0D = D0 = (r1 � r2) Æ k = [r1; r2℄ : (6)For a quadrati
 mapping (Fig.1)r(x; y) = r0 + r1u+ r2v + r3uv + r4u2 + r5v2 (7)we obtain D = D0 +D1u+D2v +D3uv +D4u2 +D5v2 ; (8)where D0 = [r1; r2℄ ;D1 = [r1; r3℄ + 2 [r4; r2℄ ;D2 = 2 [r1; r5℄ + [r3; r2℄ ;D3 = 4 [r4; r5℄ ;D4 = 2 [r4; r3℄ ;D5 = 2 [r3; r5℄ : (9)Mapping of an order n has (n + 1)(n + 2)=2 
oeÆ
ients and its 
orresponding Ja
obiann(2n�1) 
oeÆ
ients. Some restri
ted mappings are useful. For example a bilinear mappingr(x; y) = r0 + r1u + r2v + r3uv transforms a standard triangle with verti
es (0; 0), (1; 0)and (0; 1) to a 
ommon triangle with two straight edges and one 
urvilinear edge, or unitsquare with verti
es (0; 0), (1; 0), (1; 1) and (0; 1) to a 
ommon quadrilateral.



Fun
tional dis
retizationThe in
reasing of a polynomial degree of fun
tional dis
retization improves the quality ofthe smooth solution. Using an orthogonal basis will leave out an inversion of the massmatrix. Another, perhaps more important, advantage, is that an orthogonal basis makesthe modi�
ation of a polynomial degree trivial [17℄. In the following a pro
ess, how tosequentially introdu
e a set of monomials upvq into an orthonormal basis will be des
ribed.We use set of monomialsm = [1; u; v; uv; u2; v2; u2v; uv2; u3; v3 : : : upivqi : : :℄T : (10)To generate a sequen
e of orthonormal polynomials from the generating set of monomialsupvq we use an algorithm equivalent to the Gram{S
hmidt pro
ess whi
h transforms a givenset of n input ve
tors ai; i = 1; : : : ; n to a set of n orthonormal ve
tors ei spanning the sameve
tor spa
e. The pro
edure is outlined in an algorithm1. e1  a1=jja1jj2. For i = 2; : : : ; n(a) ai  ai �Pi�1j=1(ai; ej) ej(b) ei  ai=jjaijjIn step 2a of this algorithm, the i{th input ve
tor is repla
ed by its orthogonal 
omponent toa ve
tor spa
e spanned by the �rst i�1 orthonormal ve
tors, thus by the di�eren
e betweena ve
tor and its proje
tion to a sub{spa
e.An equivalent pro
edure 
an be applied to polynomial fun
tions on the 
anoni
al elements(unit square or standard triangle) to transform a given set of monomials mi to a set oforthonormal polynoms Ei1. E0  m0=jjm0jj2. For i = 1; : : : ; n(a) Ei  mi �Pi�1j=0(mi; Ej)Ej(b) Ei  Ei=jjEijjIf a mapping is linear, we 
an obtain a universal orthonormal basis, su
h as for anytriangle with straight edges in the following formp[r1; r2℄E0 = p2 ;p[r1; r2℄E1 = �2 + 6u ;p[r1; r2℄E2 = 2p3 (�1 + u+ 2v) ;p[r1; r2℄E3 = 3p2=7 (1� 4u� 4v + 20uv) ; : : : (11)



where [r1; r2℄ is a simple s
alar 
onstant , the Ja
obian D0 = (r1 � r2) Æ k = [r1; r2℄ .For a nonlinear mapping of a 
anoni
al element we obtain unique set of orthonormalfun
tions for ea
h 
urvilinear element.This is illustrated in Fig.2 where several fun
tions Ei are shown (all fun
tions are up todegree 5 ex
ept 
onstant fun
tion E0). It is 
lear that the high order methods enable toapproximate the solution inside the element in mu
h more detail.Arti�
ial 
ompressibility methodNavier-Stokes equations of an unsteady 
ow of a 
ompressible liquid are a system of mixedhyperboli
{paraboli
 type. For an in
ompressible liquid the equations form a system ofellipti
{paraboli
 type. The primary diÆ
ulty in solving the in
ompressible 
ow in primitivevariables stems from the la
k of time derivative in 
ontinuity equation. Most of the methodsrequire a solution of Poisson equation for 
oupling between the velo
ity and the pressure�eld in ea
h step. This requirement is poorly satis�ed in robust and e�e
tive numeri
almethods where balan
e of mass, momentum and energy are used. But there is a possibilityhow this disadvantage 
an be over
ome.The method is known as the arti�
ial 
ompressibility or pseudo{
ompressibility methodand was �rst introdu
ed in [6℄. In this formulation a time derivative of pressure is added tothe 
ontinuity equation. With the momentum equations we obtain a hyperboli
 system witharti�
ial pressure waves of �nite speed whi
h 
an be solved in pseudotime to divergen
e{free steady{state solution. As a 
onsequen
e of this many of eÆ
ient and well developed
ompressible 
ow algorithms 
an be used for this method. Using subiteration in pseudotime
an the method extended to solve time dependent problems [19, 2℄.Following the arti�
ial 
ompressibility formulation, a time derivative of pressure p isadded to the 
ompressibility equation�p�t + � ��vx�x + �vy�y � = 0; (12)where � is known as the pseudo{
ompressibility 
onstant whi
h is linked with an arti�
ialsound velo
ity a by the relation � = 1=a2 [1℄.The equations for in
ompressible vis
ous 
ow are presented here in nondimensional formfor x = x=L, y = y=L, vx = vx=V1, vy = vy=V1, p = p=(�V 21), t = tV1=L, M1 = V1=aand Re1 = V1L=�1. Here t represents the pseudo{time and is not related to physi
al time.Combining the momentum equations for the in
ompressible Navier{Stokes equations withequation (12) results in system �U�t + �F x�x + �F y�y = 0; (13)where U is ve
tor of variables U = [p; vx; vy℄T ; (14)



Figure 2: Orthonormal basis on a 
anoni
al triangle. In bra
kets is degree of orthonormalpolynom.



Ve
tors of 
ow 
omponents in dire
tions of 
o-ordinates F x and F y areF x = 24 vx=M21v2x + p� �xxvxvy � �xy 35 ; F y = 24 vy=M21vxvy � � yxv2y + p� � yy 35 ; (15)and 
omponents of symetri
 shear stress tensor � are�xx = 23 (2 �vx=�x� �vy=�y) =Re1;� yy = 23 (2 �vy=�y � �vx=�x) =Re1;�xy = (�vx=�y + �vy=�x) =Re1: (16)To solve the equation (13) a dis
ontinuous Galerkin method was used. The dis
ontinuousGalerkin method is espe
ially a highly 
ompa
t formulation that provides a method forobtaining a high a

ura
y solution on the unstru
tured grids [12, 3℄. Sin
e solutions of thein
ompressible equations do not have strong dis
ontinuities (sho
ks), it is possible solvingwithout need for any limiting and high order methods 
ould be used in whole 
ow �eld.More detail des
ription of this method 
an be found in [11℄.Numeri
al resultsThe 
ode was tested for some laminar 
ow 
ases. The 
ases were 
hosen be
ause they havebeen studied previously by others numeri
ally or experimentally.Driven 
avity 
owFlow in 2{D square 
avity provides a good test 
ase if there no primary 
ow dire
tion andthe boundary 
onditions are very simple. This geometry has been used as a validation 
aseby several authors [8, 21, 13, 18, 5℄ The above des
ribed method has been tested for a widerange of Reynolds numbers, Re with a polynomial degree of approximation up to seven. ForReynolds numbers up to 5000 the results pra
ti
ally 
oin
ide with data already published.Therefore we fo
us on a re
ently 
ontroversial 
ase for Re = 10000.For a long time the s
ienti�
 dis
ussion on the 
avity 
ow for Reynolds number Re =10000 was divided into two questions - is the 
ow �eld inside the 
avity stationary or not.Some works report stable solutions until this value [8, 21, 15, 16℄. But re
ent works [4, 5℄assert, that the 
ow �eld is not stable at Re = 10000 and the �rst Hopf bifur
ation o

ursaround Re = 8000. The 
al
ulations were performed on relatively dense 
omputational grids512� 512 to 2048� 2048 [5℄.In the following se
tion we present the results of the high order method but on mu
h moresparse grids. In Fig.3 there is shown a plot of time series of velo
ity vx inside a monitoringpoint for the grid 10� 10 elements for a di�erent degree of fun
tional approximation. It isevident that for using the high degree orthonormal polynoms the solution is less dampedand be
omes periodi
al.
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ity history at monitoring point (0.15,0.85). Re
tangular 
avity atRe = 10000. Grid 10� 10, fun
tional approximation degree 3 to 5.
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Figure 4: Horizontal velo
ity history and phase portrait at monitoring point (0.14,0.78).Re
tangular 
avity at Re = 10000. Grid 20� 20, fun
tional approximation degree 4.If the grid is denser, say 20� 20 elements, nearly steady periodi
al solution is obtainedwith orthogonal polynoms of four degree. The polynoms of higher order gives a very similarsolution. It is 
lear that the high order fun
tional approximation allows to des
ribe aninstability of 
ow �eld even for a very 
oarse grid of elements.Flow over a 
ir
ular 
ylinderAs an example of an external 
ow problem, the 
ow over 2{D 
ir
ular 
ylinder was 
al
ulated.The 
ode was run for invis
id and laminar{
ow test 
ases.The a

ura
y of the geometri
al dis
retization and the eÆ
ien
y of the solution aretested for the Euler equations of 
ow past a 
ir
ular 
ylinder. A series of grids 
onsisting ofa di�erent number of the triangular and isoparametri
 elements { linear or quadrati
 { have
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lowerFigure 5: Euler equations of 2D 
ow past a 
ir
ular 
ylinder. Linear approximation of aboundary (120 boundary elements, left) and quadrati
 approximation of a boundary (36boundary elements, right).been generated to study 
onvergen
e of the dis
ontinuous Galerkin method of various order.The Riemann 
ux on 
ell boundaries is approximated by a simple and robust, but moredissipative, Lax{Friedri
hs type 
ux [14, 22℄ of the formFR(Qi; Qj) Æ n = 12[F (Qi) + F (Qj)℄ Æn� �2 (Qj �Qi); (17)where � is greater than a maximum of the absolutes of the eigenvalues of dF =dQ. We 
an
onsider the se
ond term of FR approximation as a numeri
al vis
osity, whi
h is not presentin Euler equations, but is required for the stability of numeri
al solution. Simultaneouslythere is ne
essity to redu
e { as it is possible { an in
uen
e of this term in the solution.As 
an be seen in Fig. 5, linear geometri
 approximation of a boundary leads to wrongarti�
ial vorti
es downstream the 
ylinder even if a number of the boundary elements isrelatively high. On the other hand the quadrati
 approximation provides good results evenfor a relatively low number of the boundary elements.The above mentioned behaviour is intensi�ed if the high order fun
tional approximationis used. In su
h 
ase the linear approximation of 
urved boundary 
an totally devaluethe results. To su

essfully apply the high order fun
tional approximation a high orderapproximation of the 
urved walls is required.As an example of the solution of the Navier-Stokes equations a pressure �eld for Re = 5is shown in Fig. 6. The 
al
ulated values of pressure 
oeÆ
ients 
p at the front and rearstagnation points are 
pf = 1:88 and 
pr = �1:07. Even if the 
oarser grid of 357 elementsis used the results are well 
omparable with data in [7℄ (
pf = 1:872 and 
pr = �1:044) and[19℄ (
pf = 1:847 and 
pr = �1:067).Another results that were obtained by this approa
h 
an be found in [9, 10℄ for Reynoldsnumbers up to 200000. The 
al
ulated 
ow �eld reasonably well 
orrespond with availableexperimental data (e.g. [20℄).
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Figure 6: Pressure 
oeÆ
ient �eld 
p = p � p1=0:5�V 21 of 2D 
ow past a 
ir
ular 
ylinderfor Re = 5. Quadrati
 approximation of a boundary, orthonormal polynoms degree 4, meshof 357 elements.Con
lusionsThis paper shows that the appli
ation of the high order methods gives a very good resultseven on 
oarse grids. Another aspe
t is that the possibility to des
ribe the 
ow instabilitymore pre
isely was 
on�rmed. This is very important for the numeri
al solution in a rangeof the Reynolds numbers when the transition from laminar to turbulent 
ow 
an o

ur.A
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