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Summary: Articular cartilage is often modeled as a biphasic mixture (a solid 
porous matrix swollen by a fluid that may move slowly through the matrix pores). 
The anisotropic matrix is often assumed to be linearly elastic and the fluid to be 
inviscid, both being intrinsically incompressible. The viscous dissipation of the 
model is due to the frictional drag of the fluid through the matrix pores. The creep 
and stress relaxations experiments yield the equilibrium compliance of the tissue. 
At equilibrium the fluid pressure tends to zero and all the load is carried only by 
the matrix. However, for suddenly applied or quickly changing loads, the mixture 
behaves as a single-phase incompressible material. The fluid is pressurized, 
carries most of the load and makes the mixture stiffer. For small strains in the 
matrix, the paper presents this instantaneous compliance once the equilibrium 
compliance is known. 

 
 

1. Introduction 
Articular cartilage forms a thin layer on the surfaces of synovial joints and serves as a bearing 
and shock absorbing material. Articular cartilage is composed of a relatively small amount of 
cells and a large amount of an intercellular composite solid matrix (mostly proteoglycans and 
collagen fibrils) swollen by water. A part of this water is free and can be expelled upon 
compaction of the solid porous phase. 

A natural mathematical approach to articular cartilage is through a biphasic mixture (a 
porous, permeable, solid matrix with a fluid flowing through it). For example, a successful 
theoretical biphasic model of articular cartilage has been extensively studied by Mow and co-
workers: Mow et al. (1980), Armstrong et al. (1984), Mak et al. (1987, 1989). Their model 
can describe both the equilibrium and kinetic response of the tissue. Both the elastic solid 
matrix and the interstitial fluid are immiscible and intrinsically incompressible. The fluid 
(assumed to be inviscid for simplicity) may be moved through the tissue by a pressure 
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gradient. The viscous dissipation of the cartilage tissue is dominated by the frictional drag of 
the fluid through the porous permeable collagen-proteoglycan solid matrix. This model and its 
extensions have been validated experimentally for small strains of the matrix. Some 
commonly used experiments (steady direct permeability experiment (Mow et al., 1980), 
transient confined and unconfined creep and stress-relaxation experiments (Armstrong et al., 
1984), indentation creep (Mak et al., 1987, 1989)) have been made and compared with the 
mathematical solutions to obtain material parameters, i. e. the equilibrium elastic compliance 
of the matrix and permeability. In creep or stress relaxation experiments the fluid is partly 
expelled of the tissue, the fluid pressure in the pores tends to zero and at equilibrium all the 
load is carried by the matrix. The equilibrium compliances in tension and compression differ 
considerably (Akizuki et al. (1986), Cohen et al. (1993)) as different parts of the matrix 
respond to tension and to compression. While collagen fibers are stiff in tension, hydrophilic 
proteoglycan aggregates contribute to the compressive stiffness. However, non-linear bi-
modulus models would greatly complicate the analysis. As the matrix compression is 
predominantly perpendicular and the extension parallel to the articular surface, linear 
transversely isotropic or orthotropic (and even homogeneous) models agree more closely with 
the observed sites of cartilage failure (Donzelli et al., 1999) than isotropic models do. These 
anisotropic models, approximating the tension-compression nonlinearity, predict not only 
high shear stress at the subchondral-bone interface and separation of the cartilage layer, but 
are also consistent with lesions observed at the articular surface and provide better curve 
fitting data of cartilage early response indentation data (Cohen et al., 1993). 

In a short time span, due to a low matrix permeability, the interstitial fluid is pressurized 
and makes the mixture stiffer for suddenly or quickly changing loads. The purpose of this 
paper is to find theoretically the instantaneous response of the above biphasic model to a 
suddenly applied load if the equilibrium compliances are known. In fact, at the time of the 
load application, the model behaves as a single-phase incompressible elastic material. Its 
compliance at that time will be expressed with the help of the equilibrium compliance. 

 
 

2. Orthotropy of the matrix 
The equilibrium and continuity equations of the biphasic model in question (with the 
incompressible phases) are of the form (Mow et al., 1980) 
 , , ,0, ( )ij j ij j i t k kk p D u ,σ = = ,  with  ij ij ijpσ δ σ ′= − + . (1) 

Eqs. (1) , (1) , (1) 3  express, respectively, the stress equilibrium (for zero body and inertial 
forces), the flow rate balance for a volume element and the sum of the partial stresses. The 
Cartesian coordinates 

1 2

ix  are used and , , 1, 2, 3i j k = . Summation over 1, 2, 3 is assumed for 
the repeated pairs of subscripts . A comma followed by a subscript indicates the partial 
derivative with respect to the corresponding coordinate.  denotes the material time 
derivative. Symbols 

, ,i j k

,i ij

tD
,ij , ,ij p u kσ σ ′  and ijδ  denote the total stress tensor, effective (or elastic) 

stress tensor (that is due to matrix deformation), interstitial fluid pressure, matrix 
displacement vector, matrix permeability tensor and unit tensor, respectively. The matrix 
small deformation tensor is , , ) / 2j iu u( i jijε = + . Tensors , , ,ij ij ijk,ij ijσ σ δ ε′  are symmetric. 



The matrix is assumed orthotropic and Cartesian coordinates 1 2 3, ,x x x  are chosen along 
the orthotropy axes. Tensors ijε  and ijσ ′  are joined in the orthotropic Hooke law as 
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 12 12 12 13 13 13 23 23 23(1/ 2 ) , (1/ 2 ) , (1/ 2 )ε µ σ ε µ σ ε µ σ′ ′= = = ′ , 

where 
 1/ , / ,c E c Eαα α αβ βα βν α β= = − ≠ . (3) 

Here and in what follows, , , 1, 2, 3α β γ =
, ,

 and, in contrast to , no summation is made 
over pairs of repeated subscripts 

, ,i j k
α β γ . Here, / (α )αβ ββ αν ε ε βα= − ≠ , /Eα αα αασ ε′=  and 

12 13 23, ,µ µ µ  are the equilibrium Poisson ratios, equilibrium Young moduli with the strains due 
to the uni-axial stress αασ ′ , and shear moduli, respectively. If  for time t  for a 
stationary loading, then Eq. (1)  yields 

0

ij

p → →∞

3 ijσ σ ′→ . Thus, tensor c  in Eq. (2)1  defines the 
equilibrium compliance. The symmetry condition 

ij

ij jic c=  (due to the existence of the elastic 
potential) yields 
 / E E/βα β αβ αν ν= ,  α β≠ . (4) 

It follows from Eq. (4) that only three of the six Poisson ratios are independent. The 
determinant of c  in Eq. (2)  is assumed to be different from zero, and thus, system 
(2) can be inverted. The form of this inversion is omitted here. There are nine independent 
material equilibrium constants of the mixture, here called equilibrium compliances, i. e. , 
three of the six equilibrium Poisson ratios 

ij 1

1

kE

ijν  and 12µ , 13µ , 23µ . 

Assume that a biphasic body consolidates under a stationary load suddenly applied at the 
boundary at time . Let  for t  at the boundary, i. e. the interstitial fluid can 
freely pass the outer boundary. However, it holds that 

0t = 0p = 0>
0p ≠  at  there. After a 

sufficiently long time, pressure p (present in both phases) should tend to zero inside the body 
(if the pores are interconnected), and components 

0t =

ijε  tend in time to fixed values, assumed 
here to be small compared with unit. At that time, the matrix already bears the whole load. 
Consider now a unit cube cut off the material. Apply various stationary loads ijσ  at its walls 
and measure all respective consolidated values of ijε . Assume that for any number of 
measurements, Eqs. (2) (with ij ijσ σ ′= ) yield a unique set of nine equilibrium compliances. 

Now, consider a general load, applied suddenly on a biphasic body and then varying with 
time. For two intrinsically incompressible phases (the fluid in the pores and the solid phase of 
the pore walls), which is the present case, the mixture behaves as an incompressible single-
phase elastic solid at the time of the load application (Armstrong et al., 1984). In fact, at that 
moment, though the pressure gradient and the fluid flow rate are non-zero in the body, the 
fluid flow through the pores and the boundary is still zero. Both the pores and the matrix 
deform, but their volume becomes still unchanged. It is the purpose of this note to calculate 

 



the compliances (here called instantaneous) of the above single-phase incompressible material 
(at the time of the load application) using the equilibrium compliances. 

See Pipkin (1976) as to the theory of internal constraints in linear elasticity. In what 
follows, the quantities with a bar refer to the single-phase incompressible material (with 

0iiε = ). For this material, total stress ijσ  is the sum of the elastic stress, ijσ ′ , and the reaction 
to the constraint, ijpδ− , where p  is called the hydrostatic pressure: 

 ij ij ijpσ δ σ ′= − + . (5) 

The part ijpδ−  does not contribute to the strain. Note that Eq. (5) is of the same form as Eq. 
(1) . The counterparts of Eqs. (2)1 , (3)-(4) for the incompressible material are of the form 3
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with 

 1/ , / ,c E c Eαα α αβ βα βν α β= = − ≠ , (3a) 

and 

 / /E Eβα β αβ αν ν= ,  α β≠ . (4a) 

,k iE jν  refer to the instantaneous parameters of the single-phase incompressible material and 
are here called the instantaneous compliances. As the fluid transport is connected with a 
change in the volume of the matrix pores and not with matrix shear, the shear moduli of both 
media are the same ( 12 12µ µ= , etc.). 

Summing up three Eqs. (2a) and using the incompressibility condition 0iiε =  gives for a 
single 0αασ ≠  with the use of Eqs. (3a), (4a) three conditions 

 12 13 21 23 31 321, 1, 1ν ν ν ν ν ν+ = + = + = . (6) 

Eqs. (4a) and (6) yield ijν  as 
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Here , ,α β γ take, respectively, the values 1, 2, 3 and their all (not only cyclic) permutations. 

Both models (biphasic and single-phase) become equivalent at the time of the load 
application if the stresses αα αασ σ=  cause the same pressures p p=  and strains αα ααε ε=  at 
that time. Thus, let us set ,αα αα αα ααε ε σ σ= =  and p p=  for any α  and use constitutive 
equations (2), (2a) to obtain with the aid of (1) 3 , (3), (3a) 
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where with the use of Eq. (4) 

 ( ) ( ) (1 12 13 2 21 23 3 31 32
1 2 3

1 1 11 , 1 , 1a a a
E E E

)ν ν ν ν ν= − − = − − = − −ν . (9) 

Summing Eqs. (8) gives with the use of Eqs. (6) 

 ( )1 11 2 22 3 33 1 2 3a a a a a aσ σ σ− − − = + + p , (10) 

which yields p p=  as a function of αασ  and ,k iE jν . 11 22 33, ,σ σ σ  in Eqs. (8) and (10) are 
arbitrary and independent. Choosing 11 22 330, 00,σ σ σ≠ = =  (and similarly for 22σ  and 33σ ) 
in Eqs. (8) and (10), we get Eα  by excluding p  from Eq. (10) and one of Eqs. (8) for each α  
in the form 
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By taking, for example, 12 23,ν ν  and 31ν  as independent ( 21 32,ν ν  and 13ν  are then given 
through Eq. (4)) and using Eqs. (9) and (4), after some algebra, Eq. (11) gives kE  in the form 
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Here , ,α β γ  are, respectively, the cyclic permutations of 1, 2, 3. Eq. (12) gives kE  as 
functions of the equilibrium material parameters of the biphasic material, ,k iE jν . Remind that 

Eq. (7) gives ijν  as functions of kE  and that the shear moduli of both media are the same. 
Thus, all the material parameters of the equivalent single-phase incompressible material, i. e. 
immediate compliances kE , ijν , have been obtained with the help of the equilibrium 
parameters of the biphasic material, i. e. equilibrium compliances ,k iE jν . 

The inversion of the matrix of system (2a) is not trivial as its determinant is zero. Look for 
the inversion in the form 
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i. e. assume that the stiffness matrix is diagonal. Insert into Eq. (2a) for αασ  from Eq. (13), 
use the incompressibility condition 0iiε =  to exclude one of ααε  and obtain a set of equations 

 



containing always some couple of ,ββ γγε ε  (α β γ≠ ≠ ) that can be chosen independently. 
Setting always only one in these couples different from zero, a set of linear equations for three 
Cαα  is obtained. Though the number of these equations is higher than 3, all these equations 
have one solution for the main stiffnesses Cαα 1 ( , 2, 3α = ) that can be written (after using 
Eqs. (3a), (6), (7)) in the form 
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Again, here , ,α β γ  take, respectively, the values 1, 2, 3 and their cyclic permutations. This 
substantiates the assumed form of Eq. (13). Values of  must be available if the initial 
problem is solved in displacements rather then in stresses, which is often more convenient. 
 
 
3. Conclusion 
The instantaneous compliances for a linear model of biphasic mixtures (a porous elastic 
matrix and an inviscid fluid slowly flowing through the matrix pores, both intrinsically 
incompressible) have been obtained theoretically using the equilibrium compliances and 
assuming small strains in the matrix. For the orthotropic matrix, the instantaneous and 
equilibrium Young moduli and Poisson ratios have been dealt with. Eq. (14) gives the 
instantaneous main stiffnesses as functions of the instantaneous Young moduli.  

To illustrate, let us compare the instantaneous and equilibrium Young moduli for the 
human humeral head cartilage. Cohen et al. (1993) performed creep indentation tests at small 
strains and obtained the following equilibrium moduli for the cartilage matrix considered 
transversely isotopic and homogeneous across the whole thickness. When assuming 
transverse isotropy with the isotropy axis in the -axis (perpendicular to the cartilage 
surface), it holds for this special case of orthotropy 

 ( )1 2 13 23 31 32 12 23 12 1 12, , , , / 2 1E E Eν ν ν ν ν µ µ ν= = = = = +  

and Eq. (7) yields 

 31 32 13 23 21 1 31/ 2, 1 / 2E E E Eν ν ν ν ν ν= = = = = = − . 

By comparing the above experiments with the theoretical solutions, they found 
 and . For zero equilibrium Poisson ratios (see Cohen et al. 

(1993)), Eq. (12) gives the instantaneous Young moduli (equal to the main stiffnesses in this 
case!) 

3 0.46MPaE = 1 5.8MPaE =

3 3.36E = MPa  and 1 6.23E = MPa . It is apparent that the instantaneous Young moduli 
are higher than the equilibrium ones, especially for the perpendicular direction and that the 
instantaneous state is more isotropic. For zero equilibrium values of αβν  the instantaneous 
Poisson ratios become 13 23 6.3ν ν= = , 12ν ν= , 31 32 1/ 2ν ν= = , i. e. values markedly 
different from zero (their equilibrium values). It is interesting to note that the above ratio 

3 /E 3E  corresponds to that measured using the velocity of ultrasound propagation in some 
other cartilage specimens (Knecht et al., 2006). 

 



Let a biphasic solid of the above material be suddenly loaded at time . The load is 
assumed to vary with time and the time-dependent response of the solid is looked for. The 
step-load could be replaced with a load that increases smoothly and quickly from zero to the 
value of the step. For a good approximation, the time steps during the steep increase of the 
load should be very small. However, there is another possibility how to solve this time-
dependent problem. In fact, first, to solve the time-independent problem for the initial value 
of the load and a single-phase incompressible elastic material. Second, to find the time-
dependent solution for the biphasic material and the former solution should be used as the 
initial conditions for the latter. Moreover, for low matrix permeability (such as 

 for articular cartilage) and a short time span, or for a periodic loading with 
a short period (of order of several seconds), the single-phase solution could serve as a good 
approximation. 

0t =

16 410 m / N sijk −≈ ⋅
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