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Summary: This paper deals with the methodology of the modelling of rotating
shafts with flexible disks. Rotating shafts are modelled as one dimensional contin-
uum on the basis of the Bernouli-Euler theory, which assumes that the shaft cross
section remains a flat plane and is perpendicular to the centerline during vibration.
Disks are modelled as three dimensional continuum by means of the finite element
method. The presented approach allows the effects of the rotation such as centrifu-
gal and gyroscopic effects to be introduced. The two possible approaches to the
coupling of the shaft and disk subsystems are proposed. The elementary numeri-
cal example is presented. The results based on the new modelling methodology are
compared with the results based on the original methodology using the assumption
of a rigid disk.

1. Introduction

The field of the dynamics of rotating systems has a long tradition and deals with many different
types of problems. The typical mechanical systems in rotor dynamics are rotating shafts (or
shaft systems) of different shapes joined with special, mostly axi-symmetric, bodies, which can
be bladed disks, geared wheels, flywheels etc. In the recent years analyzed problems, designed
rotating systems and operation conditions are becoming more and more complex. These facts
lead also to more complex mathematical models, for which it is sometimes needed to develop
new modelling approaches.

The vibration analysis of rotating systems is commonly performed with the assumption of
ideal rigid disks. However, there are cases in which the vibrations of disks become important
and the rigid body assumption is too rough for detailed dynamic analysis. The assumption is
not correct for example in the case of the high frequency excitation and therefore it is necessary
to care about special approaches to the modelling of rotating shafts with flexible disks.

Classic monographs, like Krämer (1993), describe the modelling of rotors considering disks
as rigid bodies with their mass and inertia moments. Rotating shaft are modelled usually on
the basis of Bernouli-Euler or Timoshenko theories. This theories assume that the shaft cross
section remains a flat plane and is perpendicular to the centerline during vibration. Effects of
rotation are presented in the form of the gyroscopic matrix. Special elastic shaft finite element
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mechanics, University of West Bohemia in Pilsen; Univerzitnı́ 8; 306 14 Plzěn; tel.: +420.377 632 311,
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based on these theories is introduced for example in Yamamoto & Ishida (2001) or in Kang et al.
(2000), but rigid disks are still supossed. The specific area of rotor dynamics is the investigation
of fan vibrations, see e.g. Zeman & Hlaváč (2003), where assumption of rigid disk was also
considered.

Many publications are dedicated to the dynamic analysis of thin rotating disks. Mignolet
et al. (1996) employed perturbation techniques to estimate free vibration characteristics of a
centrally clamped disk. The cyclic symmetry approach in connection with Ritz method were
used in Tomioka et al. (1996), but there were taken into account only centrifugal effects and
Coriolis effects were neglected. Chatelet et al. (2005) published the methodology based on the
finite element method and cyclic symmetry approach for the modelling of thin flexible rotating
structures considering centrifugal stiffening and gyroscopic effects. Another application of fi-
nite elements can be found in Jang et al. (2005). Again it is goaled to the thin flexible disks
using membrane theory. One of the newest and most comprehensive monographs intended to
dynamics of rotating systems is the monograph of Genta (2005), where the issue of the rotating
disks is described in more detail. Started from the classical membrane theory for thin disks
there are shown some possible approaches for modelling general three dimensional rotors and
disks considering gyroscopic and centrifugal effects.

In all mentioned publications the flexible disk is modelled separately and uncoupled of the
shaft subsystem or the disk is supposed to be rigid. There are no difficulty in modelling rotors
using standard commercial FEM tools, but such codes usually do not take into account the
all effects caused by the rotation. This paper deals with the methodology of the modelling of
rotating shafts with flexible disks. Rotating shafts are modelled as one dimensional continuum
on the basis of the Bernouli-Euler theory. Disks are modelled as three dimensional continuum
by means of the finite element method. The presented approach allows the effects of the rotation
such as centrifugal and gyroscopic effects to be introduced.

2. Mathematical model of a system with ideally rigid coupling between the disk and the
shaft

For the sake of the mathematical model derivation it will be supposed that the whole system
consists of two subsystems — disk subsystem (subscriptD) and shaft subsystem (subscriptS).
The generalization to the more complex disk-shaft systems is straightforward. It is supposed
that the subsystems are rotating with constant angular velocityω around theirX-axis.

According to the derivation iňSǎsek et al. (2006) the disk can be discretized using solid 3D
finite elements. The conservative mathematical model of the uncoupled disk subsystem is of
the form

MDq̈D(t) + ωGDq̇D(t) + (KsD − ω2KdD)qD(t) = ω
2fD, (1)

whereMD is the mass matrix, termωGD expresses gyroscopic effects,KsD is the static stiff-
ness matrix,KdD is the dynamic stiffness matrix andω2fD is the centrifugal load vector. The
matrices are rectangular of thenD-th order and except gyroscopic matrix they are symmetrical
ones. The gyroscopic matrix is skew-symmetrical. The motion equations of the disk are written
in the configuration space defined by vector

qD = [ . . . u
(D)
j v

(D)
j w

(D)
j . . .]T ∈ RnD (2)

of nodal displacements (see Fig.1) with respect to the rotating coordinate systemx, y, z.
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Fig.1 Scheme of the disk and its coordinate systems.

The shaft subsystem is modelled as an one dimensional continuum on assumption of the
undeformable cross-section that is still perpendicular to the shaft center-line. The shaft is dis-
cretized using shaft finite elements (see Fig.2) with two nodes. The displacements of each shaft
finite element in node ”i” are described by six generalized coordinates — three displacements
ui, vi, wi and three rotationsϕi, ϑi, ψi. The shaft conservative mathematical model in the
configuration space defined by the vector

qS = [ . . . ui vi wi ϕi ϑi ψi . . .]
T ∈ RnS (3)

is of the form

MSq̈S(t) + ωGSq̇S(t) + (KsS − ω2KdS +KB)qS(t) = 0, (4)

where mass matrixMS, static stiffness matrixKsS and dynamic stiffness matrixKdS are sym-
metrical and gyroscopic matrixωGS is skew-symmetrical. Rolling-element bearings are de-
scribed in this mathematical model by symmetrical stiffness matrixKB. Particular forms of
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Fig.2 Scheme of the shaft finite element.



the bearing stiffness matrix in non-rotating coordinate system can be found e.g. in Slavı́k et al.
(1997) or in Zeman & Haǰzman (2005).

In order to derive the equations of motion of the disk-shaft system with ideally rigid coupling
between the subsystems it can be supposed that the disk is mounted in the defined set of shaft
nodes. Then the displacements of the disk nodes on the inner surface can be expressed by the
displacements of shaft node ”i” that is defined as one of the mounting points (Fig.3). It holds

q
(D)
j = Tji(αj)q

(S)
i (5)

for the transformation between the displacements of the disk nodeqj and the shaft nodeqi.
Expressing the transformation matrixTji(α)j statement (5) can be rewritten as

 u
(D)
j

v
(D)
j

w
(D)
j

 =
 1 0 0 0 r sinαj −r cosαj

0 1 0 −r sinαj 0 ξ
0 0 1 r cosαj −ξ 0



ui

vi

wj

ϕi

ϑi

ψ

 . (6)

The vectors of generalized coordinates can be partitioned with respect to the coupling of the
nodes as

qD =

[
qD1

qD2

]
and qS =

[
qS1

qS2

]
. (7)

Fig.3 Shaft and disk nodes and their displacements in the rotating coordinate system.



In the same manner each matrix or vector in the equations (1) and (4) can be rearranged as it is
shown for the disk mass matrix

MD =

[
MD1 MD3

MT
D3 MD2

]
. (8)

The displacements of the disk nodes coupled with the shaft nodes are expressed in terms of
shaft generalized coordinates

qD2 = TqS1, (9)

whereT is the rectangular global transformation matrix composed of matricesTji(α). After
introducing this transformation in equations (1) and (4) it yields

MD1qD1 +MD3qD2 + ωGD1qD1 + ωGD3qD2 +KD1(ω)qD1 +KD3(ω)qD2 = ω2fD1, (10)

MT
D3qD1 +MD2TqS1 − ωGT

D3qD1 + ωGD2TqS1 +KT
D3(ω)qD1 +KD2(ω)TqS1 = ω2fD2, (11)

MS1qS1 +MS3qS2 + ωGS1qS1 + ωGS3qS2 +KS1qS1 +KS3qS2 = 0, (12)

MT
S3qS1 +MS2qS1 − ωGT

S3qS1 + ωGS2qS1 +KT
S3qS1 +KS2qS2 = 0, (13)

where the total disk stiffness matrix was denotedKD(ω) = (KsD − ω2KdD) and the shaft
stiffness matrix including bearing couplings was denotedKS = (KsS − ω2KdS +KB). In
order to obtain the full set of equations of motion of the coupled disk-shaft system equation
(11) can be multiplied by matrixT T and add to equation (12). Then the mathematical model of
the disk-shaft system is of the form MD1 MD3T 0

T T MT
D3 T T MD2T +MS1 MS3

0 MT
S3 MS2

 q̈D1

q̈S1

q̈S2

+
+ω

 GD1 GD3T 0
−T T GT

D3 T T GD2T +GS1 GS3

0 −GT
S3 GS2

 q̇D1

q̇S1

q̇S2

+
+

 KD1(ω) KD3(ω)T 0
T T KD3(ω)T T T KD2(ω)T +KS1 KS3

0 KT
S3 KS2

 qD1

qS1

qS2

 =
 ω2fD1

ω2T T fD1

0

 .
(14)

Generally the corresponding coupling nodes of the shaft and of the disk can be chosen with
respect to the discretization of both bodies by finite elements. For purpose to make a realistic
model of the rotor it should be suitable to fix different disk nodes in more than one shaft nodes.

3. Mathematical model of a system with flexible coupling between the disk and the shaft

The second possibility of the disk-shaft system modelling is introducing the flexible coupling
between the subsystems. This methodology can be used e.g. for representing the key fitting
between shaft and disk, that is usual design solution in some engineering applications. The
conservative mathematical model of disk and shaft subsystems mutually joined by flexible cou-
pling is of the form

MDq̈D(t) + ωGDq̇D(t) + (KsD − ω2KdD)qD(t) = ω
2fD + fC

D , (15)



MSq̈S(t) + ωGSq̇S(t) + (KsS − ω2KdS +KB)qS(t) = fC
S , (16)

where all matrices and vectors except vectorsfC
D andfC

S are explained in the previous section
of the paper. These vectors represent the coupling forces between particular subsystems. The
coupling forces are acting in the chosen shaft nodes, where the disk is mounted on, and in the
chosen disk nodes, that lie on the inner circumference of the disk body (see Fig.3).

The global coupling force vectorfC in global configuration space of the disk-shaft system

q =
[
qT

D qT
S

]T
(17)

can be calculated by differentiating the potential (strain) energy

fC =

[
fC

D

fC
S

]
= −

∂EC
p

∂q
. (18)

If the disk-shaft coupling is realized usingni shaft nodes andnj disk nodes for each shaft node
the global coupling force vector can be rewritten in the form

fC = −KCq = −
ni∑

i=1

nj∑
j=1

KC
i,jq, (19)

where stiffness matricesKi,j corresponding to the particular coupling betweeni-th andj-th
nodes are calculated as

∂EC
i,j

∂q
=KC

i,jq. (20)

The coupling is characterized by three stiffnesseskt in tangent direction to the shaft cross-
section,kr in radial direction andkax in axial direction. These stiffnesses are used for each
coupling betweeni-th andj-th nodes. The mathematical model of the whole system is[

MD 0
0 MS

] [
q̈D

q̈S

]
+ ω

[
GD 0
0 GS

] [
q̇D

q̇S

]
+

+

([
KD(ω) 0
0 KS

]
+KC

) [
qD

qS

]
=

[
ω2fD

0

]
.

(21)

The advantage of this approach is the possibility of the usage of the modal synthesis method,
that allows to reduce degrees of freedom of the model in the course of model creation. The
modal analysis of the conservative models of uncoupled and non-rotating subsystems

MDq̈D +KsDqD = 0, MSq̈S + (KsS +KB) qS = 0 (22)

is performed and master eigenvectors of the subsystems are arranged in the rectangular modal
matricesmVD ∈ RnD,mD andmVS ∈ RnS ,mS . The modal transformations

qD(t) =
mVDxD(t) and qS(t) =

mVSxS(t) (23)

are then introduced in the model (21) and after multiplying from left by

V T =

[
mV T

D 0
0 mV T

S

]
(24)



the reduced mathematical model of the disk-shaft system is[
ẍD

ẍS

]
+ ω

[
mV T

D GD
mVD 0

0 mV T
S GS

mVS

] [
ẋD

ẋS

]
+

+

([
mΛD − ω mV T

D KdD
mVD 0

0 mΛS − ω mV T
S KdS

mVS

]
+ V T KCV

) [
xD

xS

]
=

=

[
ω2 mV T

D fD

0

]
.

(25)

This model is created in the new configuration space

x(t) =

[
xD(t)
xS(t)

]
∈ RmD+mS , mD � nD, mS � nS. (26)

4. Application of the methodology to the test disk-shaft-bearing system

The modelling methodology will be illustrated by means of a test rotor (disk-shaft-bearing sys-
tem) shown in Fig.4. The shaft radius isr = 0.025m, the disk radiusR = 0.08m, the disk
width h = 0.04m and the shaft lengthsa = b = 0.14m. The shaft were discretized using 16
shaft 1D elements and the disk were discretized using 576 solid elements. The isotropic bear-
ings (stiffnesskB = 109 N/m) were considered in the outside nodes of the shaft (left bearing —
radial and axial direction, right bearing — radial direction). Standard steel material properties
were considered. The original in-house software was created in MATLAB system based on the
developed modelling methodology.

Fig.4 Scheme of the test rotor.

In this paper the results of the modal analysis of the test rotor forω = 0 and for flexible
coupling between the disk and shaft subsystems are compared with the reference model of the
test rotor. This reference model is based on the original methodology using the representation



Tab.1 Eigenfrequencies [Hz] of the test rotor calculated using different mathematical models.
The numbers in brackets denote the number of the corresponding eigenmode.

Reference model Flexible coupling Note
Stiff Soft

0 (1) 0 (1) 0 (1) free rotation aroundX-axis
651 (2,3) 708 (2,3) 659 (2,3) bending
1410 (4) 1402 (4) 1373 (4) axial

2222 (5,6) 2226 (5,6) 1719 (5,6) bending
5758 (7) 5878 (8) 5773 (12) torsional
5912 (8) 4564 (7) 1834 (7) torsional

6083 (9,10) 6291 (11,12) 4256 (8,9) bending
6248 (11,12) 5939 (9,10) 4799 (10,11) bending

- 7065 (13) 6414 (14) bending of the disk
- 7072 (14) 6424 (15) bending of the disk

9760 (13) 7432 (15) 5803 (13) axial
11997 (14) 10254 (16) 9993 (18) axial

12627 (15,16) 11599 (19,20) 10612 (21,22) bending
12810 (17,18) 11443 (17,18) 7658 (16,17) bending

- 12899 (21) 10410 (19) radial deformation of the disk
- 12900 (22) 10416 (20) radial deformation of the disk

17558 (19) 13919 (23) 11835 (23) torsional
- 14278 (24,25) 14142 (24,25) bending of the disk

of the disk as a rigid body with calculated inertia properties mounted in a chosen shaft node, see
e.g. Slavik et al. (1997). Two different flexible couplings, stiff and soft, characterized by dif-
ferent local stiffnesseskt, kr, kax were considered. These stiffnesses were chosen with respect
to the ratio of the global coupling stiffnesses and the shaft stiffnesses that can be analytically
expressed (Slavı́k et al, 1997).

The comparison of eigenfrequencies [Hz] obtained by means of three models (reference,
stiff flexible coupling, soft flexible coupling) is shown in Tab.1. The numbers in brackets denote
the number of corresponding eigenmodes. The character of the eigenmodes of vibration is
described in the last column.

The first eigenfrequency is zero because the rotor can freely rotate around its axis of rota-
tion. From the several eigenfrequencies corresponding to bending eigenmodes obtained using
reference and stiff coupling models it can be seen the effect of the bending stiffening, because
the disk in reference model is fixed only in one shaft node and the flexible disk is joined with
more adjacent shaft nodes. The same effect cannot be seen in comparison with soft flexible
coupling because the appropriate eigenmodes are characterized also by the deformation of the
discrete disk-shaft coupling and therefore the system is more ”soft”. This is also the case ax-
ial and torsional eigenmodes, where the eigenfrequencies of the models based on the flexible
coupling are lower than reference eigenfrequencies. The differences between the corresponding
eigenfrequencies obtained using stiff and soft coupling models are caused by the soft disk-shaft
coupling that is dominantly deformed. However the most important result of this analysis is the
presence of the eigenmodes characterized by the pure flexible disk vibration (bending or radial



deformation) that cannot be catched by the original reference model. These eigenmodes can
be excited by high-frequency excitation and the proposed new modelling methodology can be
more accurate than the original one based on the assumption of rigid disks.

Fig.5 The second eigenmode of the test rotor (for stiff flexible coupling).

Fig.6 The thirteenth eigenmode of the test rotor (for stiff flexible coupling).

5. Conclusions

The modelling methodology of the flexible rotors (disk-shaft-bearing systems) was presented
in the paper. In comparison with previous works the new methodology for the flexible disk
and flexible shaft modelling is introduced. The work was motivated by the missing commercial



tools intended for the modal analysis of rotating structures, such as disks, turbines, fly-wheels,
rotors etc. The methodology is based on the finite element modelling and it allows to consider
effects caused by the rotation of the structure (gyroscopic and centrifugal effects). The flexible
shaft is modelled as 1D continuum, the disk as 3D continuum and two types of the disk-shaft
coupling (ideally rigid and flexible) are developed.

The introduced methodology was applied to the simple test rotor. The comparison of the
modal analysis results (ω = 0) for flexible disk-shaft coupling and for original reference model
were shown. The reference model is characterized by the assumption of a rigid disk. The
advantage of the new methodology is mainly in the consideration of the flexible disk for high-
frequency excitation.

The methodology can be used e.g. for the mathematical modelling of bladed disks in tur-
bine dynamics or for the modelling of the geared wheels and disks in gearboxes and similar
transmission systems. It can be easily generalized for damped system and for various types
of excitation. The introduced mathematical model is suitable for the analysis of the effects of
rotation on the flexible rotating systems.
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mechanics AŠCR, Prague, pp. 163-170.
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