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Summary: The beam with an axial force is coupled by an elastic layer of Winkler
type with the pretensiled string. It is subjected to a row of moving forces. The theore-
tical model corresponds to a prestressed bridge. The concrete bridges of this type are
the most spread types appearing on both the road and railway bridges of small and
medium spans. The governing equations form a coupled set of partial differential
equations that are solved using the Fourier and Laplace integral transformations
for the undamped case. The numerical solution is examined for the damped case.

1. Introduction

Many years standing effort has been devoted to damp the dynamic effects of both the highway
and railway vehicles crossing bridges. For that purpose, a significant amount of systems have
been developed, e.g. elastic supports of bridges, triangular falsework systems with controlled
damping, double systems with two beams or two strings connecting together with an elastic
layer, etc. They are briefly described in [1] and cited in details in [2] and [3]. The double systems
of double beams and double strings were firstly introduced by the papers of Kawanazoe et al.
[4] and Oniszczuk [5]. However, each of the systems mentioned above shows its technical or
economic of effectiveness only in some specific conditions.

On the other hand, the prestressed bridges, world wide used for highway as well as railway
bridges of small and medium spans, form naturally a double system with two elements: beam
and pretensiled strings. That is the reason, why an idea arose — to bind both the elements with
an elastic layer and dampers to diminish the dynamic response.

The aim of the present paper is to show the effect of the double system beam and string and
put a question on the effectiveness of damping between the beam and the string. The presented
paper extends the topic presented at the conference IM2006 by the influence of damping in the
elastic layer.

2. Theory

The Figure 1 represents the theoretical model of a beam, pretensiled string and an elastic layer
subjected to a row of axle forces. The axle forces Fn, n = 1, . . . , N move with a constant speed
c. The simple supported beam and string provide the span l. The beam is subjected to an axial
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force N1, while the string is tensed by a force N2, N1 = −N2. An elastic layer of Winkler type
binds together both the carrying elements, its characteristic is k [N/mm] and its viscous damping
ωd1 or ωd2, respectively.

         
Obr. 1. Teoretický model nosníku, předpínací struny a pružné vrstvy, který je zatížen 

řadou pohybujících se sil. 
 
Soustava parciálních diferenciálních rovnic popisuje chování Bernoulliho-Eulerova 

nosníku a struny : 
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Fig. 1. Theoretical model

A system of partial differential equations describes the dynamic behaviour of the Bernoulli-
Euler beam and string:
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where

vi(x, t), i = 1, 2 – vertical deflection of the beam (i = 1) and the string (i = 2), respectively,
at place x and time t,

E, I – modulus of elasticity and inertial cross-section moment, respectively, of the beam,

µi – mass of the beam (i = 1) and of the string (i = 2), respectively, per unit length,

δ(x) – Dirac delta function,



εn(t) = h(t − tn) − h(t − Tn) – the function describing the position of the n-th force with
respect to the beam, h(t) is the Heaviside unit function, h(t) = 0 for t < 0 and h(t) = 1
for t ≥ 0,

dn – distance of the n-th force from the first one, d1 = 0,

tn = dn/c, Tn = (dn + l)/c, c is the moving speed,

xn = ct− dn.

The boundary and initial conditions are supposed to be zero:

v1(0, t) = v′′1(0, t) = v1(l, t) = v′′1(0, t) = v2(0, t) = v2(l, t) = 0 (3)

vi(x, 0) = v̇i(x, 0) = 0, i = 1, 2 (4)

where the primes and dots denote the derivatives with respect to x or t, respectively.
Let us introduce remaining symbols which are used further:
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3. Solution

For the solution of eqns (1) and (2), the Fourier integral transformation method can be applied
in the variable x and the Laplace transform in the variable t. If the solution vi(x, t) is written in
the form of
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and the Fourier coefficients using their Laplace transform
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one can get following relation for the Laplace transform V ?
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The explicit inverse Laplace transform of the expressions (8,9) for the undamepd case (ωd2 =
ωd1 = 0) can be found e.g. in [6]. For the damped case is the explicit expression so complicated
that such a formula brings no advantage.



4. Numerical solution

To obtain a system of equations which feasible for the numerical solution we will assume the
solution vi(x, t) to have a form of Fourier expansion:
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)
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Here we take as an advantage that vj(x) = sin
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)
is the j-th natural mode of the Bernoulli-
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The system of two ordinary differential equations is to be solved numerically for selected
number ν of terms of expansion (10) and fixed coordinate x = l/2. The deflection value vi(l/2, t)
obtained using (10) will be further normalized by the term (F is the total weight of the bridge)
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giving
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5. Numerical results

The deflection-time histories were calculated for several hundreds of cases in 3 series of different
bridges. The eqn (14) was used for the damped series, explicit inverse Laplace transformation
of eqns. (8), (9) for undamped cases.

The following case is demonstrated here as an example: The concrete bridge with parameters
summarized in the Table 1 is subjected to a row of 10 vehicles with axle loads F1 = F3 =
1.6 × 105 N, F2 = F4 = 4.8 × 105 N in distances d1 = 0, d2 = 3 m, d3 = 12 m, d4 = 15
m (valid for Czech standard highways) and with the gaps of 9 m between the vehicles, at low
velocity 5 km/h and at speed 70 km/h. The responses of the beam midspans (in dimensionless
form) are depicted in Figure 2 for undamped case (first row) and for the damped case with
ωd1 = ωd2 = 0.2 in the second row.

Tab. 1. Properties of the bridge under study
l = 30m, E = 3.2× 104 N mm−2, I = 1.347× 1012 mm4,
µ1 = 1.1× 10−2 Ns2mm−2, F = 4.8× 105 N, N2 = 5.6× 106 N,
k = 100 Ns2mm−2, µ2 = 0.002 Ns2mm−2, ωd1,2 = 0 or 0.2 s−1
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Fig. 2. Deflection-time history at 5 km/h (left column) and at 70 km/h (right column) for the
undamped case (first row) and the damped case with ωd1 = ωd2 = 0.2 (second row).

As it can be seen from the Figure 2, as well as from the values in the Table 1, the damping
coefficient has very little influence on the overall behaviour. This fact can be justified by the
small difference between maximal deflections v10(l/2, t) and v20(l/2, t) even for the undamped
case. These dimensionless values are 3.16593 and 3.17447 respectively, for both ωd1,2 = 0 and
c = 70km/h and 3.17033 and 3.17858 respectively for ωd1 = ωd2 = 0.2. The lines of v10(l/2, t)
and v20(l/2, t) almost coincide in both cases.

The influence of the individual parameters k, µ2 and velocity c on the total deflections
v10(l/2, t) and v20(l/2, t) can be examined by computing the correlation coefficients between
maximal response and various values of the input parameters for a large number of combination
of parameters. These correlation coefficients are shown in the Table 2.

Tab. 2. Correlation coefficients of the maximal deflections v10(l/2, t) and v02(l/2, t)
and input parameters k, µ2 and c.

k µ2 c ωd1 ωd2 v1(l/2, t) v2(l/2, t)
v10(l/2, t) 0.02701 0.08099 0.57417 0.01333 -0.00387 1.00000 0.24892
v20(l/2, t) 0.39730 0.01804 0.08769 -0.00229 0.00104 0.24891 1.00000

The Figure 2 and Table 1 symbolize the great effect of the speed of moving forces on the beam
deflection v01(l/2, t), correlation coefficient 0.57, whereas the characteristic k of the Winkler
type binding between the beam and string has the major influence on the behaviour of the string
deflection v02(l/2, t) – correlation coefficient 0.4. On the other hand, influence of the deflection
of the string to the behaviour of the beam is relatively small (correlation coefficient 0.25).

It was derived in [2] and [3], that the eqns (1) and (2) depend on 6 dimensionless parameters.
Then, it is difficult, particularly in practice, to develop the materials corresponding to the severe
conditions for the parameters. Further on, the results in [2] and [3] show the ranges of parameters,
which provide a low response of the beam subjected to a moving force.



6. Conclusions

The dynamic behaviour of the system beam and string bounded together by an elastic layer
is analysed. A set of partial differential equations describes the problem and is solved using
the integral transformation methods and numerically. The equations are governed by several
input parameters and, only in rear cases, the response of the beam with an elastic layer may be
substantially lower than that one without the layer.

The major effect on the beam deflection has the speed of moving forces, whereas the cha-
racteristic k of the elastic layer between the beam and string has the major influence on the
behaviour of the string deflection. On the other hand, influence of the deflection of the string on
the behaviour of the beam is relatively small.
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[2] Frýba, L. Fischer, C., Dynamics of prestressed beams coupled with a string. In : C.A. Bre-
bbia, G.M. Carlomagno (eds) : Computational Methods and Experimental Measurements
XII. Southampton, Boston, WIT Press, pp. 445-454, 2005.
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