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Summary: The paper deals with an old problem of praxis. Structures, in general,
are exposed to random excitations, which generate normal and torsional stresses.
While an estimation of fatigue life is rather well known for uniaxial stress, quite
different situation holds for combined random stress. A new approach to the title
problem is described lower. It is based on cumulation of stress energy density in
peaks of a complex damaging stress.

1. Introduction
Fatigue of metals is a very serious problem of mechanical structures exposed to dynamic

loading. This is a reason why the phenomenon has been pursuited over 150 years. In spite of
it, results of investigations are not perfect namely in cases of random and combined loading.
There are many hypotheses for estimating of fatigue life, however, all of them should be used
with caution.

The general way of displaying fatigue properties of specimens tested under harmonic loading
are diagrams of S-N curves. They plot numbers of cycles Na of harmonic loading to failure as
functions of applied stress amplitudes σa or τa. The points of experimental results are plotted in
swapped axes in such a way that the dependent Na is on the horizontal and independent stress
amplitude on vertical axis. To create such diagrams is rather expensive because of long-term
tests of specimens on special testing machines.

Harmonic loading occurs rather rarely in operational conditions. Usually, measured stresses
are random processes generated by a random environment of an observed object. Typical rep-
resentatives of such objects are vehicules. Random character of stresses obstructs a direct ap-
plication of S-N curves for estimation of fatigue life. However, many hypotheses of damage
cumulation have been developed, which may serve for the purpose. The first, who invented
how to transform damage caused by a random loading into harmonic one, was Pålmgren (1924).
His idea was extended by Langer (1937), who split the total time of damage in two parts – the
time of latent damage, and the period of crack propagation. More than 20 years after Pålmgren,
Miner (1945) published the same formula (

∑
n/N = 1) for damage caused by random stresses

in America. Since that time, this procedure is denoted as the Palmgren-Miner rule in Europe,
and as the Miner rule in United States of America. Modifications of this rule of linear cumu-
lation of damage appeared later in many hypotheses of other authors. One of the most used
hypothesis belongs to Corten and Dolan (1956). It enables the user to control slope of the S-N
curve for calculating the damage.
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All above mentioned hypotheses are applicable for lifetime estimation in conditions of uni-
axial stresses. The accuracy of estimates rapidly increased when the ’rain-flow’ algorithm de-
veloped by Matsuishi and Endo (1968) appeared. Unfortunately, majority of machine parts
works in conditions of multiaxial loading, which generates combined stress. This fact disables
to use rain-flow method, because no closed hysteresis loops are generated. In consequence there
is no reliable method for estimating fatigue life of parts exposed to multiaxial stress.

2. Stress energy density
Many years ago, Balda (1981) published his heuristic uniaxial method, which transformed

standard S-N curves [sa, Na] of steel, where sa was an amplitude of stress σa or τa and Na

a number of harmonic cycles to fracture, into similarly looking diagram [a, Ed] with a an
aggressivity of stress process and Ed a sum of squares of stress peaks. It supplied quite good
results when applied to data from the article of Pfeiffer (1975). The method has been reinvented
recently, when searching the suitable method for fatigue life prediction of combine stressed
parts. However, better theoretical background had to support it.

It is clear that any fatigue damage is caused by an energy cumulated in plastic deformations
of a tested part. Unfortunately, to find this energy is not a simple problem. However, an elastic
energy density may be obtained from the formulae of linear elasticity:

Let ε = [ εx, εy, εz, γyz, γzx, γxy ]T and σ = [ σx, σy, σz, τyz, τzx, τxy ]T

be vectors of relative deformations and stresses, respectively. Linear transformations hold be-
tween both vectors:

ε = Φσ and σ = κε , (1)
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with Young modulus E, Poisson’s ratio ν and stiffness matrix κ = Φ−1. Hence, the elastic
energy density is described by the equation

Λ =
1

2
εT κε =

1

2
σTΦσ . (4)



Uniaxial stress
It is convenient to use second formula from the equation (4) because stresses can be cal-

culated directly from acting generalized forces. Hence, the stress energy density for uniaxial
loading becomes

Λ1a =
σ2

a

2E
or Λ1a =

2(1 + ν) τ 2
a

2E
(5)

in every peak and valley of the loading cycle, respectively. It is clear, that quantity Ed used in
the transformed fatigue life diagram instead of Na was simply scaled cumulative stress energy
density Ed = 2E

∑
2Na

Λ1a. Let the aggressivity a used in the new diagram instead of σa is
a function a = g(p), where p is a vector of test parameters. Processing of Pfeiffer (1975)
data has shown, that the statistical moments of extremes are the significant parameters of the
aggressivity function. If the distribution is more or less symmetric, it is fair to expect that a is
mainly a function of a magnitude of extremes and their distribution. Hence, it has been accepted
to express the aggressivity a as function of the standard deviation sσ of extremes of the stress
process σ(t) as the square root of the second moment, and the normalized fourth moment µ4 of
extremes, kurtosis. The aggressivity has been tested in a trial form a = sσ µ4, which manifested
a good fit for Pfeiffers’ tests in tension-pressure.

Biaxial stress
A biaxial stress arises, when vector σ has two nonzero elements. It is also a case of one

normal stress σ and one shear τ . The instantaneous stress energy density then becomes

Λ2 =
1

2
σTΦσ =

σ2 + 2(1 + ν) τ 2

2E
. (6)

Comparing this result with the first formula from equation (5), one observes, that the nomi-
nator is essentially square of some, say damaging, stress

σ2
d = σ2 + (kc τ)2 . (7)

Fig. 1. Trajectory of complex stress

Since ν = 0.3 for steel in elastic state, k2
c = 2.6.

It is already for the third time, when we have ob-
tained the identical formula for fatigue strength
of material under combined stress condition.
For the first time it has been presented in Balda
and Svoboda (2002), and after in Balda et all
(2003). In the later reference, it has been de-
clared that kc = σc/τc in order that uniaxial
ultimate fatigue stresses σc and τc as limits of
combined stresses are not biased.

Unfortunately, there is no straight way how
to obtain real σd(t) from the equation (7). Nev-
ertheless, the equation can be understood as a
modulus of complex stress function

σd(t) = σ(t) + i kc τ(t) . (8)

A sample trajectory of damaging stress un-
der equation (8) is rather complicated in the
complex plane of σd (see Fig. 1).



Maximal deviations from the origin are denoted by small circles. It is clear, that it is difficult
to say how hysteresis curves are getting close, and what are the amplitudes of cycles. Hence,
we may conclude that the rainflow algorithm for decomposition of the combined stress process
is inapplicable. Fortunately, we have the formula (6) for the stress energy density. A total stress
energy density in extremes of module squares |σda|2 is a measure of accumulated energy during
the whole test in a tested part. The aggressivity of the damaging process can be obtained in a
similar way as for the uniaxial loading.

It is always advantageous to work with non-dimensional quantities. This is the reason why
relative total stress energy density has been introduced in the form

Ed =

∑N
n=1 σ2

da,n

R2
m

≤ 1 , (9)

and also relative aggressivity a of a combined stress process

a =
sσda

g(µ4a)

Rm

, 0 < a ≤ 1 . (10)

Both quantities have been used for plotting fatigue lifetime curves in non-dimensional coordi-
nates.

3. Experimental verification
Thanks to the long-term research of multiaxial fatigue in the Institute of Thermomechanics,

there is a collection of many experimental results obtained from tests on tube specimens loaded
by a general combination of tension-pressure and torque processes.

Fig. 2. Notched tube specimen

Fig. 2 depicts the tube specimen that has
been used for all tests during several years of
investigations. The specimens have been tested
on a computer controlled electro-hydraulic test-
ing machine INOVA ZUZ 200-1 enabling com-
bined loading. Testing programs covered tests
of both notched and plain specimens. Measure-
ments were carried out for both uniaxial stresses
σ(t) or τ(t) and their random non-proportional
combination.

Tab. 1. Parameters of specimens

Chemical contents [%] Mechanical properties [Mpa]
C Mn Si P S Rm Re σc τc σ∗c τ ∗c

0,18 1,29 0,50 0,28 0,14 550 450 220 135 120 80

Mechanical properties denoted by symbols without asterisks belong to plain tube, while
those with asterisks are valid for specimen with a drilled lateral hole 3 mm in diameter. It
is remarkable that the value of the coefficient k2

c evaluated from the ratio of fatigue ultimate
stresses is k2

c = (σc/τc)
2 = 2.6557 is very close to the theoretical value k2

c = 2.6, which is valid
for plain tubes. The coefficient k∗2c = (σ∗c/τ

∗
c )2 = (120/80)2 = 2.25 for notched tubes.
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Fig. 3. Lifetime curve of plain tubes

Fig. 3 shows results of processing 21 uniaxial harmonic tests of plain tubes fatigue lives,
which are marked by triangles in the figure. There are also circle markers in the diagram, of
22 fatigue lives of plain tubes non-proportionally loaded by a various combinations of random
force and torque processes characterized by a coefficient κ4a = sτa/sσa. Symbols sa are stan-
dard deviations of σ(t) and τ(t) extremes. In both cases, the aggressivity of the loading has
been evaluated via the equation (10) with g(µ4a) = µ4a = m4a/σ

4
da. It is obvious that the scat-

tering of test results of combined loading is large. It means that the function g(·) depends not
only on µ4a but also on the ratio of standard deviations of shear an normal components κ4a.

The figure contains some basic parameters of the processing. Firstly, there is a value of the
coefficient kc on the top center of the diagram. The theoretical value k2

c = 2.6 has been used in
Fig. 3. A least square fit of the data in logarithmic axes has been prepared for the global relative
stress energy density Ed as an exponential function of the aggressivity. The form is printed
in the left lower corner of the diagram with fitted coefficient b included. In log-log axes, the
curve fitted from all points of fatigue lives is a straight line going through the point (1; 1), which
corresponds the strength Rm of material in tension. Just below the value of b-coefficient, there
is standard deviation of point of stress energy density points.

The bold symbol O, on the left from the fitted line represents an order of a program version.
Versions of the program fatgED vary by slight differences in calculating global stress energy
density and the aggressivity. The program assembled in MATLAB evaluates fatigue lives for
both harmonic and combined loading, and forms tests records and diagrams.
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Fig. 4. Lifetime curve of notched tubes

Similar situation raises up for notched tube specimens as seen from Fig. 4. Results of 19
harmonic tests are marked by triangles in the figure. Note that left and right oriented triangles
belong already to special combined loading, when one component is dynamic while the other
static. It is obvious that not only uniaxial tests with σ(t) or τ(t) but also those with static
components are creating one well grouped set. If the same held for uniaxial loading with static
components, the new fatigue life diagram were as important as the Haigh’s diagram for ultimate
fatigue stress limit.

The collection of harmonic tests points is complemented by 25 random tests results, com-
bined stress with various κ inclusive, denoted by circles in the diagram. They have larger
scattering just like in case of plain tubes. It is expected that the more complex formula for func-
tion g(·) might change the slope of the least-square fit line, and lower the standard deviation
of the final cumulative stress energy density denoted as std(dE)=3.65= sE in the diagram.
It means that 68 % of results comes into the band ±sE round the least squares line, provided
the result distribution be normal. Note that the coefficient k∗c used for evaluation both energy
density and aggressivity has been chosen 1.5, which corresponds to the ratio σ∗c/τ

∗
c .

Comparing figures 3 and 4, one concludes that there is certain similarity between new fatigue
life curves and standard S-N curves. Both curves are approximately linear in log-log axes, and
their descent is steeper for notched specimens. Liner course of the curve has been validated by
the plain tube specimen tests under high levels of stresses (see Fig. 3). However, this behavior
should also be checked by tests performed on notched specimens by harmonic uniaxial loading.



4. Conclusions
The contribution describes an attempt to unify many approaches for evaluation of fatigue

lives of arbitrarily loaded parts into one. It is based on the fact that the driving substance
of the fatigue damage is the stress energy density cumulated on a crack tip such causing its
propagation.

The idea is not quite new. It appeared already a quarter of century ago in much simpler
case of uniaxial fatigue. This contribution presents the new method, which transforms all kinds
of stressing into one effective damaging stress and calculates two artificial quantities i.e. a
cumulative stress energy density in stress extremes and an aggressivity of loading. The new
method is supported by almost 90 experimental results of fatigue tests performed on plain and
notched tube specimens under both uniaxial and combined loading.

The final form of the method needs to flesh out the formula for the evaluation of the loading
aggressivity with the aim to lower an error of a fatigue life estimation. Experiments with the
method should be complemented by special periodic and proportional process loading tests.

Acknowledgment
The contribution has been supported by the grant project GAČR No. 101/05/0199, and the
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