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1. Introduction

The research of robot control is oriented to build robots that can manipulate objects. The 

robots are non-linear systems controlled using non-linear controllers will be used.  The 

problem is that non-linear control methods are more difficult to apply than linear ones. Very 

often it is used linear controllers to control non-linear systems, firstly PD or PID controllers. 

To adjust the controller parameters some method of linearization may be used. Theorists often 

use stabilization by Lyapunov theory especially the LaSalle invariant theorem. This approach 

is used in this paper to control of end point of robot on a defined surface. Equations of robot 

motion are described by the set of Lagrange equations in the special form. The robot endpoint 

is constrained to move on the surface. We assume that the working space is closed and 

bounded, that is compact. This assumption is fulfilled in each real case. 

2. Controlled system description 

Let the working space Ω of robot be compact in the Euclidean space E3 . Let L be a surface in 

E3 , bounded and closed. Hence L and Ω are closed and so their intersection L∩Ω is the 

closed subset of compact set Ω. Thereupon L∩Ω is compact too.  Suppose that the robot 

dynamics is described by non-linear equation of motion in the matrix form  

                     ( ) QqgqqqCqqM =++ ���� ),()(                                (1)  

where M(q) is the symmetric inertial matrix, positive definite and continuous whose second 

partial derivatives are continuous too; q = (�1,…,�n)
T
 is a set of generalized co-ordinates 

complete, independent which has continuous second partial derivatives; g denotes the gravity    

 force vector 
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force vector  

( ) �
�� � )/,...,/( 1 ∂∂∂∂=qg ,

where�� �is the potential energy,  C is the matrix defined by 

( ) ( ) ��

�
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� ++= 0,
2

1
),( MqqSqMqqC �

�

� .

where the matrix M0 is diagonal non-negative and usually represents damping factors while S

is the skew symmetric matrix 
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Q on the right hand side of (1) is the vector of generalized forces (torques). Let us make a 

remark qqqC �� ),(  represents Coriolis and centrifugal forces. 

Define a vector x = (x1,x2,x3)
T
 in the Cartesian coordinates. Let the surface L be described by 

the equation R(x) = 0, that is L={x; R(x) = 0}. Suppose that this surface is regular, so that its 

gradient x∂∂%  exists and is non-zero. We suppose that R has continuous second derivatives. 

If these conditions are fulfilled in a given neighborhoods around each point, we can define the 

set Ω, such that they are verified in Ω. Therefore x = x(q) can be replaced into R(x(q)) which 

leads one to consider R(x(q)) = 0. We shall usually write R(q) instead of R(x(q)). The vector 

on the right-hand side of (1) has structure 

�� QQuQ −+=                                 (2)

where u is the control vector. The contact force in the normal direction of the surface is 

described (3) 
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where n is the normal vector of the surface L

( ) xxn ∂∂∂∂= %% .

F is a scalar function of q and represents the force in the orthogonal direction. The tangent 

force represents contact friction and is given by 

( ) x
q

x
xQ �� ⋅��
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∂
∂

=
�

� λ                          (4) 

The function λ  is positive, for linear dependence of the friction is only a constant. More 

generally λ  represents more complicated dependences of friction on the motion velocity and 

sometimes may represent the influences of changes of position, so that very generally 

( )xx,�λλ =  or

( ))(,)( qxqqx �∂∂= λλ .
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Remember, that by definition  
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Suppose that the first of them is a full rank matrix.  

3. Stability and control 

In this section will be treated the stability problem for PD controller with compensation of 

gravity force and contact force. Let the feedback be defined by  

                    ��,)( QqgqBqAu −+−∆−= � ,                 (5) 

where A and B are diagonal positive definite matrices, which represent  P and D components 

of  PD controller, 
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where qd is a given desired end-position and 

�qqq −=∆ .

Substituting (5) into (1) yields the equation of the closed loop 

��� ,0 ]
2

1
)[( QQQqAqSMBMqM t −=+∆⋅+++++ �

�

��

Let us define

D = M0 + B and �&&& −=∆ )(q ,

where F(qd)=Fd is the desired value of the normal force at the endpoint. From the definition of 

the surface it can be verified that 
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we can rewrite the closed loop equation into 

&

��

∆⋅��
	



��
�




∂
∂

=∆⋅+⋅
�
�

�

�

�
�

�

�

∂
∂⋅��

	



��
�




∂
∂++++

q

x
nqAq

q

x

q

x
SMDqM �

�

�� λ
2

1
          (6) 

Let us define the following  Lyapunov function   

qAqqqMqqq ∆⋅⋅∆+=∆ ��5
2

1
)(

2

1
),( ��� .                     (7) 

If we differentiate this function and using 
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we get : 
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Substituting this equation into (6), then 
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The matrix S is skew symmetric and hence 

0=qSqT
�� .

For points of the surface R(x)=0 by differentiation   
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∂
∂

∂
∂

q
q

x

x
�

%

and hence 
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q

x
n � .                               (9) 

From these results we obtain the inequality 
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The matrix D is diagonal positive definite and the function λ is positive.  Hence the relations 

(7) and (10) show that the control process is stable, as it is well known from the Lyapunov 

theory of stability. 

     From (9) we can derive 
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If we use (11) in (6), we can compute the difference ∆F as a function of qq �, . Because all 

functions and matrices are continuous in compact working space, they are bounded and hence 

if q�  and q∆  converge to zero, then ∆F converges to zero too. ∆F is obtained from (6) and 

(11) : 

{ } T1
KKMqAKMqKqFKM
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Consider the inequality 

η<∆ ),( qq �5 .

If  η→0
+
 , then from (7), with respect that the matrix M has a positive lower bound, follows 

dqq → , 0q →�  and hence from (12)  ∆F→0. Therefore for Fd > 0, there exists α > 0, such 

that for arbitrary η < α � ∆F� < Fd . But the inequality � ∆F� < Fd and Fd >0 is equivalent to 

F>0 and the endpoint is in contact with the surface, that is R(x(q))=0. Therefore, if the control 

process will be started from any initial point 

))0(),0(( qq � ,

such that 

η<∆ ))0(),0(( qq �5 ,

then, as the function W is not increasing (10), it is clear that 

η<∆ ))(),(( ��5 qq �

 for any t >0. According to previous discussion 0 < F, and hence the endpoint will be 

maintained in contact with the constraint surface. 

     Accordingly, from (7) it follows that there is a neighborhood of the point (qd,0) such that 

every trajectory which starts from this neighborhood will remain there for every positive t. 

     Next, consider the invariant set of equation (6).  According to (10), every point from the 

invariant set must be (q,    0) and must satisfy the equation 
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As we supposed, the second partial derivatives of R(x) exist and are continuous. The vector 

function
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has continuous partial derivatives and using  the middle value theorem of functions in linear 

norm spaces it follows that    
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where ],[ �qqp ∈  means, that the vector p is a convex combination of the points q, qd. C1 is a 

non-negative constant. From this follows 

                    
2
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If we use Taylor’s expansion theorem at point qd of function R(x(q)), then 
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If points q, qd are on the surface L, then R(x(q))=0, R(x(qd))=0, so it follows from (15) that 
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where H is the Hessian matrix. The non-zero function  

x∂∂%

 is continuous on the compact set Ω or Ω∩L, respectively.  Hence there exists a positive m, 

such that 

x
x
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If we divide (16) by 
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From this inequality, and using (13) and (14) we get 
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for positive constant C3.  But for suitable neighborhood  of the end point it is possible  to 

choose C3 sufficiently large such that 

         0213 >∆−− &��� .               (17) 

and hence ∆q = 0. These results demonstrate that the maximum invariant set of (6) has only 

one point (qd,0).  If we apply the LaSalle invariant theorem, then  
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0qqq →→ )(,)( �� � �   as ∞→� .

But this means that  F → Fd as   t → ∞.

     Remark that often it is possible to choose the matrix A sufficiently large so that C3 is 

sufficiently large, too. 

4. Conclusion 

Let us assume that R(qd) = 0, qd ∈ Ω,  Fd > 0,

0≠∂∂ q%  in Ω,

and the diagonal matrix A > 0 is chosen sufficiently large. Then the equilibrium point (qd,0) is 

asymptotically stable in the sense that there exists a neighborhood Bd of (qd,0) on the 

subsurface L∩Ω, such that every solution of (6) starting from arbitrary initial state  

�6∈))0(),0(( qq � ,

 asymptotically approaches the point (qd,0) as ∞→�  and  F → Fd  as ∞→� .

     The controller parameters can be adjusted by optimization of suitable criterion. The 

controlled system is nonlinear and hence for optimization of parameters it is interesting to 

combine global optimization methods with local ones, which are well known in mathematical 

programming. 
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