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Summary: Determination of the muscle force that produce particular muscles 

is extremely difficult, because of the technical problems of definiting muscle 

parameters. However, orthopeadists, biomechanical engineers and physical 

therapists need to take muscle forces into consideration, because joint contact 

forces, as well as muscle forces, need to be estimated in order to understand the 

joint and bone loading. The magnitude of the muscle force varies with mechanical 

and physiological characteristics of relevant muscle and with muscle activity. In 

terms of these facts was proposed the neural network object to determine the 

muscle force from particular muscles and evaluate the sensitivity to input muscle 

parameters.

1. Introduction

Years, biomechanical engineers have been trying to solve the complexity of the 

musculoskeletal system. By one of serious and important issues is find simple determination 

of muscle forces in order to understand joint function, bone loading and pathology. There are 

number of intrinsic and extrinsic design parameters in the musculoskeletal system, which 

have a different influence on the relevant muscle force, therefore, the objective of our work 

was evaluated these muscle parameters. 

Recently, there has been increasing interest in employing artificial neural networks (NNs) 

as method for estimation of movement (Koike & Kawato, 2000). Current NNs can be trained 

to solve problems that are difficult for conventional computers or human beings. The big 

advantage of NNs is obtaining results without knowledge of the algorithm procedure or 

without full and exact information. The backpropagation types of NNs were used to estimate 

of relation between elbow joint angle, myosignals and static torque (Uschiyama et al., 1998) 

and also to predict of muscle forces from electromyography in animals (Savenberg & Herzog, 

1997).

* Ing. Jana Vejpustková, Ing. Miloslav Vilímek, Ph.D., Doc. Ing. Miroslav Sochor, CSc.: Department of 

Mechanics, Faculty of Mechanical Engineering, CTU in Prague; Technická 4; 166 07 Prague 6, Czech 

Republic; tel.: +420 224 352 654, fax: +420 233 322 482; e-mail: vejpustk@biomed.fsid.cvut.cz 

National Conference with International Participation
ENGINEERING MECHANICS 2006
Svratka, Czech Republic, May 15 – 18, 2006

paper no.
284

1



There were evaluated Hill muscle model sensitivity to parameter perturbations in forward 

dynamic simulations of running and walking in the study Scovil & Ronsky (2005). Our 

approach is new, because presents an effective, readily and fast method to evaluate the 

sensitivity of input muscle parameters and it has not been performed by NNs yet. For muscle 

parameters were taken 14 muscle properties which were the physiological characteristics of 

the participating muscles of the particular joint mechanism, together with further data about 

the movement and electric activation of the muscles. 

Numerous muscle parameters are difficult to obtain from noninvasive methods, therefore 

muscle parameters are most often taken from literature, where the data are compiled from 

both human and animal muscle experiments and have different initial conditions. This may 

cause the variation in results, therefore the influence of muscle parameters on the 

musculoskeletal simulations was evaluated. 

2. The input muscle parameters (Input and output parameters)

The neural network (NN) was proposed to evaluate 14 input muscle parameters (Table 1), 

which influence the resulting muscle forces. To train the proposed NN object was necessary 

to know the output parameter (OP). As OP, the muscle force, applying the Virtual Muscle 

system (Cheng et al., 2000), was used in order to relate this to the real muscle force. In this 

case, the inputs were muscle morphometrical data, time depending on length of 

musculotendon and muscle activity. Benefit of our work was taken into account more muscle 

parameters and still evaluation of predicted muscle force sensitivity to muscle parameters. 

Table 1 Input parameters were the physiological characteristics of the participating 

muscles of the particular joint mechanism, together with further data about the movement and 

muscle activity (fiber recruitment). 

1. Musculotendon length LMT [m] 

2. Velocity of muscle shortening v [m.s
-1

]

3. Optimal pennation angle 0 [rad] 

4. Optimal muscle fiber length l0 [m] 

5. Physiological crossectional area PCSA [m
2
]

6. Tendon slack length LST [m] 

7. Maximal isometric muscle force F0 [N] 

8. Active force-muscle length factor Fla [-]

9. Passive force-muscle length factor Flp [-]

10. Force-velocity factor Fv [-]

11. Muscle activity a( t) [-]

12.-14. History of muscle activity aH( t) [-]
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As well as the musculotendon length, LMT, having an effect on the maximum force it can 

generate, so does the velocity of muscle shortening, v. The musculotendon length, LMT, (the 

length of the entire muscle-tendon unit origin to insertion) was estimated from anatomical 

positions of muscle attachments and recorded kinematic data, the velocity of muscle 

shortening, v, was calculated from recorded kinematic data (the slow movement and the fast 

movement unloaded, and loaded, respectively). For estimation force-velocity factor, Fv, and 

for maximal isometric muscle force, F0, which a muscle can generate, is necessary to know 

the physiological crossectional area, PCSA, of the human skeletal muscle. Some of the 

muscular parameters were reported in Veger (1997) (the optimal muscle fiber length, l0, the 

optimal pennation angle, 0, and the capacity of the muscle, V) and converted to the different 

proportions of the specimen. Because PCSA crossing across all fibres of the muscle is 

estimated the optimal pennation angle, 0, which determines organization fibres in a muscle. 

The tendon slack lengths, LST, were theoretically calculated by method published in (Garner & 

Pandy, 2003). Maximal isometric muscle force, F0, was calculated as (1). 

PCSAF0  (1) 

The size of specific muscle tension for our research was applied 2.8.31 cmN  (Scott et 

al., 1996), is difficult quantity to measure in humanshe specific muscle tension. This value 

was taken, because the same value as default is used in Virtual Muscle system (Cheng et al., 

2000).

Total force of muscle is given by sum of active and passive force. Therefore, the force-

muscle length factor was taken into account in terms of (Gordon & Huxley, 1966), and the 

curves of passive, Flp, and active, Fla, properties, scaled to provide a destription for specific 

muscle are fit by parabolic and exponential functions. The force-velocity factor, Fv, was 

calculated from hill equation (Hill, 1970) for concentric contraction and modified hill 

equation (Krylow & Sandercock, 1997) for eccentric contraction. 

An arm movements were from full extension E = 0° to full flexion F = 145° (Radford. & 

Carr, 2002) of the elbow joint for a fixed shoulder joint. The forearm was free to move in the 

sagittal plane of the elbow. The elbow flexion/extension movements were recorded using the 

6-camera 60Hz VICON Motion Analysis system, two movement speeds (slow, 1.1rad/sec and 

fast, 2.8rad/sec) and two loading conditions (unloaded and with 4.2kg bar-bell) were studied. 

The electric activity of the observed muscles was recorded by surface electromyography 

(EMG). The processed EMG signal was done by filtering of frequences which are lower then 

20Hz and higher then 500Hz, offsetting, rectifying (rendering the signal to have excursions of 

one polarity) and integrating the signal over a specified interval of time (De Luca, 1997). The 

processed and the normalized EMG signal was taken as the input of the muscle activity, a(t)

and the history of muscle activity, a1H(t+ t), a2H(t+2 t), a3H(t+3 t). The history of muscle 

activity ensures direct expression of time, thereby dynamic of the object of neural network. 

The input of the muscle activity was distributed to the time steps (1-100 steps) and then each 

input of the history of the muscle activity was moved of one step, two steps and three steps in 

time, respectively. It should be noted that muscle activity level was calculated as the ratio 

between the current neural activity and the same activity during maximal voluntary isometric 

muscle contraction. 
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3. Neural network architecture 

The neural network architecture was the feedforward multilayer network – backpropagation 

(BPG), in this case consisting of three layers (input layer and two hidden layers followed by 

an output layer). Feedforward multilayer network was fully connected - that was, each neuron 

in a given layer was connected to every neuron in the next layer, neurons in the same layer 

were not connected. The network object (Figure 1) with 30 neurons in the 1st hidden layer 

and with 24 neurons in the 2nd hidden layer was proposed. Between input layer and 1st 

hidden layer and between 1st and 2nd hidden layer there were used sigmoidal transfer 

function – tansig. Multilayer network used the sigmoidal transfer functions, because they 

were differentiable functions. Between 2nd hidden layer and ouput layer was used linear 

transfer function – purelin. Linear transfer function was used so the neural outputs took on 

any value. In the course of the backpropagation learning, the main goal was to find out the 

solution having the smallest error and the fastest convergence with respect to the network's 

weights and biases. By adjusting network`s weights, network object was trained to perform 

complicated problems, in our case, prediction muscle forces. 

Figure 1 A schematic representation of three-layer feedforward neural network with 

supervised learning algorithm (BPG). The input muscle parameters were the physiological 

characteristics of the participating muscles of the particular joint mechanism, together with 

further data about the movement and muscle activity. The output parameter for training the 

network object was the muscle force. 

The training sets were created for 7 musculotendon actuators in the elbow joint: four 

flexors: m.biceps brachii c.longum and c.breve; m.brachialis; m.brachioradialis; and three 

extensors: m.triceps brachii c.laterale, c.mediale and c.longum for 4 movement conditions 

(combination of fast and slow motion and unloaded and with weight). For each muscle were 

created 4 files with different movement conditions. Each file contained 392 patterns (98 data 

was for 1 movement). As a whole there were 28 files created. Finally, for the elbow problem 

was available 2744 data. 

4. Results 

The goal of the sensitivity analysis was decreased the number of the input muscle parameters 

(IMPs) for easily predicting the muscle forces. Some of IMPs are difficult to obtain or 

accuratelly compute, especially from the muscles, which are profundus. Therefore there was 

an effort to examine if some of IMPs were possible to eliminate without increasing the 

network error. Two ways were used to decrease of the number of IMPs – performance of the 

sensitivity analysis and finding of biomechanical relations between IMPs. For comparison of 

the size of influence IMPs on the resulting muscle forces was used the correlation coefficient. 
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After evaluated sensitivity some of IMPs could be eliminated the tendon slack length, Lst,
and the passive force-muscle length factor, Flp, because without them the error of NN did not 

increase rapidly. Next IMPs were eliminated with regard to the biomechanical relations – the 

velocity of muscle shortening, v, the maximal isometric muscle force, F0, and the optimal 

pennation angle, 0. 

The most inconsistent IMP was the muscle activity, a(t). When NN object was trained 

without the muscle activity, a(t), the mean absolute error performance function was twotimes 

greater than when training BPG with the muscle activity, a(t). It is also evident, that the 

muscle activity, a(t), includes information about the muscle state and work and can describe 

various situations as for example the same velocity of muscle shortening, v, with different 

muscle loadings. This finding corresponds with the knowledge that, if the muscle activity, 

a(t), parameter equels zero value, the muscle can not produce active force, Fla. NN object 

could not have only this extremely sensitive input, because the activity of muscles also 

depends on the control task and can be quite different for the same joint angle and joint torque 

(Tax et al., 1990). 

5. Conclusions 

This study presents an method to evaluate the sensitivity of the input muscle parameters 

(IMPs) to the resulting muscle forces and demonstrates that sensitivity is dependent on the 

system being proposed. It is obvious that exact measurement of some IMPs is an invasive or 

very difficult. Therefore decrease of IMPs, which are difficult to obtain increase accuracy. 

This analysis points out the importance of careful selection, accurate measurements of the 

most sensitive muscle parameters. 
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