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Summary: The localization and path planning problem belong to basic tasks in 
navigation  of  mobile  robots.  Markov localization seems to  be  a good way to  
successful  localization. However it  is difficult  to use this method for real-time 
applications.  To avoid this limitation we developed, implemented and tested a  
new  algorithm  of  robot  localization  in  real-time.  In  this  paper  we  describe  
theoretical principles and practical results for the new localization algorithm.

1. Introduction

Mobile robot localization is the problem of estimating a robot's pose (location, orientation) 
relative to its environment. The localization problem is a key problem in mobile robotics, it 
plays a main role in various mobile robot systems.

There are three different issues in robot localization:

1. The most simple localization problem is position tracking. Here the initial robot pose 
is known, and the problem is to compensate incremental errors in a robot's odometry.

2. More challenging is the global localization problem, where a robot doesn't know its 
initial  pose  but  has  to  determine  it  from  scratch  instead.  The  global  localization 
problem is more difficult, since the error in the robot's estimate cannot be assumed to 
be small.

3. Even more difficult is the kidnapped robot problem, in which a well-localized robot is 
teleported to some other place without being told. This problem differs from the global 
localization problem in that the robot might resolutely believe itself to be somewhere 
else at the time of the kidnapping. The kidnapped robot problem is often used to test a 
robot's ability to recover from catastrophic localization failures.

Finally, all these problems are particularly hard in dynamic environment, if robot operates in 
the proximity of moving objects which corrupt the robot's sensor measurements.

Many of existing algorithms address only the position tracking problem. The nature of small, 
incremental  errors  makes  algorithms  such  as  Kalman  filters  applicable.  Kalman  filters 
estimate posterior distributions of robot poses conditioned on sensor data. This limitation is 
overcome by two related families of algorithms: localization with multi-hypothesis Kalman 
filters and Markov localization. 

1 Ing. Stanislav Věchet, PhD. Institute of Automation and Computer Science, Brno University of Technology, 
Technická 2, 616 69, Brno, Czech Republic, tel: +420 541 143 356, email: vechet.s@fme.vutbr.cz

2 Ing. Jiří Krejsa, PhD. Institute of Thermomechanics – Brno branch, Czech Academy of Sciences, Technická 
2, 616 69, Brno, Czech Republic, tel: +420 541142885, email: jkrejsa@umt.fme.vutbr.cz

National Conference with International Participation
ENGINEERING MECHANICS 2006
Svratka, Czech Republic, May 15 – 18, 2006

paper no.
168

1



Multi-hypothesis Kalman filters in practical implementation extract low-dimensional features 
from the sensor data, thereby ignoring much of the information acquired by a robot's sensors. 
Markov  localization  (ML)  algorithms  represents  beliefs  by  piecewise  constant  functions 
(histogram) over the space of all possible poses. Kalman filters offer an elegant and efficient 
algorithm for localization. However, the restrictive nature of the belief representation makes 
plain Kalman filters inapplicable to global localization problem. As the Markov localization 
seems to be a good way to robot localization, in our initial experiments we discovered that 
this method is problematic in real-time application due to its computational requirements. 
Standard estimating time for complex environment can extend to the magnitude of minutes.

2. Localization method

To meet the localization method requirements, new algorithm based on pre-computed world 
scan and comparison with actual neighborhood scan was developed, implemented and tested. 
The key idea is to estimate a probability density over the state space conditioned on the data. 
This is typically called the "belief" and is denoted as

( )( ) , ,Bel x r x a S= (1)

where x is the state (robot pose),  a denotes the actual perceptual data reading by robot in 
given state (such as infrared sensor measurements), S represents a set of m samples distributed 
uniformly in state space,  r is a reward function which return the „belief“ for given inputs 
x,a,S.

The belief is computed for each sample as follows:

1. assume the robot's pose is x, and let o denote the individual sensor beam with bearing 
 relative to the robot then the distance d reading for this beam is given according to

( , )j jd g x o= (2)

( , )jg x o  denote the measurement of an ideal sensor

Fig. 1: Individual distance measurement
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2. for n beams we have complete neighborhood scan
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Fig. 2: Complete neighborhood scan

3. than the set S of m samples is
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4. and the reward function r is 

(5)

3. Simulation experiments

For tests in real world and verification of theoretical and simulation results we built simple 
mobile test robot MLOK I, controlled from PC and equipped with proximity sensors (pair of 
GP2D12 infrared sensors with 100-800 mm range in  full 360° scan range) and step motors 
giving the robot maximum speed of 100mm/sec. The minimal resolution of the step move in 
straight direction is limited to 1 cm and to 5° for the rotation.

Presented localization method was successfully tested on simulation tasks and also in real 
world.  Simulation  test  was  performed  in  virtual  environment.  This  environment  was 
represented by room with dimensions 6x8 meters.  In this  room was number of  obstacles 
which represented standard room equipment.
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Fig. 3: Influence of number of sensor beams and number of samples to position estimate 
error(left) and to localization time(right).

The robot’s task was to localize itself in the room. The influence of number of localization 
parameters (e.g.  the number of sensor beams used for robot’s neighborhood scan, sensor 
reading error, number of samples, ...)  to localization time and position estimate error was 
tested. This results you can see on figure 3. 

  

Fig. 4: Localization in simulation experiments. Room dimensions: 6x8m, 1600 samples, 72 
beams, localization time 120ms, noise 20%

Typical results of localization task are shown on the Figure 4 and 5. The gray scale rectangles 
represent the belief that the robot is on given pose. Based on these results the experiments in 
real world were prepared. Localization method was successful, but the limitations of small 
sensor range little distorted the results in comparison with simulation. Better scene sensors are 
necessary for  more complex verification of this  localization method.  Further  details  were 
published in [2].
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Fig. 5: Localization in simulation experiments. Room dimensions: 6x8m, 10000 samples, 72 
beams, localization time 5s, noise 20%

4. Conclusions 

In  present  time  a  final  localization  experiments  on  simple  mobile  robot  MLOK  II  are 
performed.  This  robot  is  equipped  with  infrared  sensors  of  higher  measurement  range 
compared  to  MLOK  I  (about  1.5m).  These  experiments  form  a  basement  for  more 
sophisticated navigation method which belongs to the SLAM (Simultaneous Localization And 
Mapping) problems, capable of localization with initially unknown map, when robot’s goal is 
to create consistent map and find itself on the real position.
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