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Summary: The active magnetic bearing control through self learning controller 
is described in this contribution. Controller’s coefficient (parameter) values come 
from actions of Continuous Action Reinforcement Learning Automatas (CARLAs) 
which continuously update the controller’s coefficients according to behavior of 
the active magnetic bearing. The goal of this on-line training is formulated as 
achievement of minimum mean square of control error. It is shown that CARLA 
method is capable of learning better parameters than standard method of optimal 
control design called LQ (linear quadratic) design. Described concept of control 
is proved by control of the active magnetic bearing. 

 
 

1. Introduction 
Active magnetic bearing (AMB) inhibits contact between rotor and stator and so it eliminates 
limitations of classic bearing. Therefore it is possible to use AMB in specific and extreme 
circumstances where classic bearing is inapplicable. Electromagnets located in stator of the 
bearing create magnetic field. The force caused by magnetic field keeps rotor levitating in 
desired position in the middle of air clearance. So the control of magnetic field is necessary. 

Nonlinearity of AMB’s behavior causes problems when linear regulator is used for control. 
The linear regulator is capable of control of AMB, but its performance is poor. It is possible 
to recalculate desired action to corresponding input voltage of electromagnets to linearize 
response of AMB to action. LQ design can be used to design optimal controller of linearized 
AMB afterwards. Common problem of optimal control design methods is that they are not 
robust. Furthermore, model of AMB used to controller design is approximate only. CARLA 
method can be used to improve performance of designed controller. 

CARLA method belongs to the group of learning automats. Its learning is based on random 
selection of controller parameters from predefined range during control. Update of learned 
value is based on real behavior of controlled system. So it is capable to learn appropriate 
parameter values of controller for real AMB. 
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2. Active magnetic bearing 
Simplified model of AMB is used for control design. Rotor is replaced by mass point, 
gravitation is neglected (assumed as compensated one) and the nonlinearity is considered for 
electromagnetic subsystem only. 
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where  is mass of mass point, is damping, m b x  is position,  and  are forces 

generated by electromagnets,  is disturbance affecting AMB and is size of air clearance 
between coils. 
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Figure 1: Model of AMB 

 
 
 

Table 1: Parameters of AMB 

Parameter Description Value Unit 

m  Mass of mass point 0.2  [kg]  
b  Damping 20  [Ns/m] 
d  Size of air clearance 0.0014  [m] 

R  Resistance of electromagnets 266  [Ω]  

L  Inductance of electromagnets 0.87  [H]  
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2.2. Magnetic force model 
Behavior of magnetic force is assumed to be directly proportional to current and inversely 
proportional to quadratic function of distance. Coefficients of magnetic force model are 
obtained by measuring relation between current and distance at constant force (see fig. 2) and 
use of regression analysis. 

distance between coil and rotor [m]
0,0000 0,0002 0,0004 0,0006 0,0008 0,0010 0,0012 0,0014

cu
rr

en
t d

iv
id

ed
 b

y 
fo

rc
e 

[A
/N

]

0,00

0,02

0,04

0,06

0,08

0,10

regresion curve
measured values

 
Figure 2: Relation between current and distance at constant force 

 
Resulting model of magnetic force is 

 

 

1
1 2 4

2
2 2 4

2.796 10 53.37 2.675 10

2.796 10 53.37 2.675 10

m

m

i
F

e
i

F
e e

−

−

=
⋅ − ⋅ + ⋅ ⋅

=
⋅ + ⋅ + ⋅ ⋅

2

2

e , (2) 

where  

 
2
de = − x . (3) 

 

 
Figure 3: Magnetic force 
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3. Controller design 
Design of controller of nonlinear system is not an easy task, but many methods exist to design 
controller of linear system. So it would be much easier to design controller for the AMB if it 
behaves like linear system. 

 

3.1. Linearization of behavior of AMB 
Only part of AMB with nonlinear behavior is electromagnetic subsystem. Its model is known, 
so it is easy task to derive equations for the input currents which linearize behavior of AMB 
by comparing desired and real behavior of AMB 

 
 , (4) 2mkv F F= − 1m

 
where  is desired stiffness and  is input. Equation (4) is satisfied if input currents are k v
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Equations (5) form so called linearizing controller. Resulting behavior of real AMB is 

linear approximately only. To make AMB’s behavior exactly linear, it is needed to know 
exact model of AMB. 

 

3.2. Controller design of linearized AMB 
Any of many methods can be used to design controller of AMB once its behavior is linear. 
LQ design is chosen. This method designs optimal discrete PID controller. Common problem 
of optimal control design methods is they are not robust. It means resulting controller is not 
optimal for approximately linearized AMB in this case. 

 
 

Table 2: Parameters of designed controller 

Parameter Description Value Unit 

pK  proportional gain 9.5919  [ ]−  

iK  integrative gain 26.512  -1s⎡ ⎤⎣ ⎦  

dK  derivative gain 0.30949  [ ]s  

T  sampling period 310−  [ ]s  

 

4 Engineering Mechanics, Svratka 2006, #133



3.3. CARLA method 
CARLA method [1, 2] can be used to learn improved PID controller’s parameter values. 
CARLA method belongs to the group of learning automats. Its learning is based on real 
behavior of a controlled system. It learns by random selection of action (parameter value). 
The selection is based on probability density function ( )f x . The probability density function 
is updated according to behavior of controlled system. Learned value is value with highest 
probability of selection.  

CARLA method is capable of minimizing defined performance criteria  without 
knowledge of model of controlled system. Performance criteria of AMB is defined as square 
value of distance of rotor from center position 

J
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where  is deviation in horizontal axis and  is deviation in vertical axis. xe ye
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Figure 4: Controller interconnection (one axis) 
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3.4. Implementation notes 
Building of current source is not an easy task so AMB is controlled by effective value of 
voltage generated by PWM (pulse width modulation) voltage source. Relation between 
current and voltage is defined by (1). Inductance of electromagnets can be neglected 
considering use of discrete controller and use of PWM. By substituting equations of 
linearizing controller (5) into (1) we get 
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Sensors with low noise are used so filtering of measured values is not needed. Selection of 
value of stiffness  is based on simulations. Its value is selected to achieve good performance 
of control. Microcontroller used to implementation of control algorithm needs indispensable 
time to compute action, so a nonzero time delay exist between measurement and application 
of action to system. 

k

 
Table 3: Controller parameters 

Parameter Description Value Unit 

DT  action delay 42.5 10−⋅  [ ]s  

k  stiffness 200  [ ]−  

−  resolution of PWM 8  [ ]bit  

PWMf  frequency of PWM 39  [ ]kHz  

maxu  amplitude of voltage of PWM 48.2  [ ]V  

 
Limits of intervals of CARLA method’s actions are selected as ±30% of controller 

parameter values designed by LQ design. Frequency of iterations of CARLA method should 
be higher than the used one to increase speed of learning, but it is limited by microcontroller 
used for implementation. 

 
Table 4: Parameters of CARLA method 

Parameter Description Value Unit 
min max;p pK K  range of allowed actions 6.7;12.47  [ ]−  

min max;i iK K  range of allowed actions  18.56;34.47  -1s⎡ ⎤⎣ ⎦  

min max;d dK K  range of allowed actions  0.22;0.4  [ ]s  

hg  height of Gaussian function 0.2  [ ]−  

wg  width of Gaussian function 0.02  [ ]−  

CR  number of last costs to compute performance 50  [ ]−  

N  number of samples to save probability density 50  [ ]−  

CT  delay between iterations  0.65  [ ]s  
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4. Results 
Following results are obtained by measuring behavior of real AMB. Although previous 
derivation was done for single axis only, real AMB is controlled in two axes – horizontal and 
vertical. Schema of interconnection for one axis can be seen on figure 4. Interconnection of 
second axis is the same. The only exception is CARLA method. It is common to both axes, 
i.e. it learns one set of controller parameters for both axes. 

Parameters of AMB, controller and learning are given by tables 1, 2, 3 and 4. Load of rotor 
of AMB is constant – 0N in horizontal axis and  in vertical axis (weight of rotor).  2N

 
Figure 5: Learning progress 

 
Learned proportional and derivative gains (see table 4) are smaller than ones designed by 

LQ design so AMB has lower stiffness if learned values are used. But it has to be considered, 
learning was done at constant loading force so CARLA method had no opportunity to adjust 
to variable loading force. 

 
Table 5: Learned parameter values of controller 

Parameter Description Value Unit 

pK  proportional gain 7.6  [ ]−  

iK  integrative gain 31.7  -1s⎡ ⎤⎣ ⎦  

dK  derivative gain 0.252  [ ]s  

 
Behavior of the AMB controlled by the controller with the parameter values designed by 

LQ design (LQ controller) is much worse then behavior of AMB controlled by the controller 
with the learned ones (learned controller). The LQ controller causes oscillations with high 
amplitude without external reason (see fig. 6). 
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Figure 6: Behavior of AMB  

 
Although the oscillations stop after some time, they can be invoked at any time by an 

application of a pulse of a loading force (see fig. 7). The learned controller stabilizes position 
of rotor without oscillations in short time. The amplitude of the applied impulse is 5N. 

 
Figure 7: Behavior of AMB (response to impulse) 

 
Disadvantage of learned controller is that it is optimized for one type of loading and 

concrete controlled system. If type of loading or parameters of controlled system change the 
performance of learned controller gets worse. On figure 8 you can se behavior of AMB if 
weight of rotor is changed by step. The size of change is 70%.  

The learned controller cannot handle the change. But if CARLA method is still learning, it 
adjusts to the change (see fig. 9). Time to readjustment depends on complexity of controlled 
system and delay between iterations of CARLA method. 
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Figure 8: Behavior of AMB (changed parameters of AMB) 

 
The readjustment takes long time in this case, because of high delay between iterations of 

CARLA method. The high delay is caused by low computing power of microcontroller used 
for implementation. If better microcontroller is used, the time to readjustment will be 
approximately 150s instead of actual 2000s. 

 
Figure 9: Behavior of AMB after adjusting to changed parameters 

 
 

5. Conclusion 
The analytically designed controller is capable of control of AMB, but its performance is 
poor. It is caused by inexact model used to control design. Improvement of model is needed to 
improve quality of analytically designed controller, but it cannot be done easily. Much easier 
is an adjustment of controller parameter values by CARLA method. It optimizes controller 
parameter values according to real behavior of AMB and type of loading. Advantage of this 
approach is CARLA method can be connected and learning whole time the controller is 
running. So it adjusts parameter values according to variations of type of loading. 
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