
MULTI-LEVER FLOW BRANCHING 
V.  Tesař*

Summary: Paper presents basic concepts governing distribution of a fluid flow into 
a large number of parallel devices. Derived laws for multi-level progressive division 
into branches are first validated by comparison with known data on mammalian res-
piratory and cardiovascular systems. Then the optimality criterion is sought for the 
specific conditions of microfluidics, with channels etched in a planar substrate. 

1. Introduction 
The subject of the present paper became recently of particular importance due to the emer-
gence of microfluidics - handling fluid flows in devices of submillimetre characteristic dimen-
sions [1, 17]. When the objective are large-scale effects, the microdevices are not scaled up 
(which would mean losing the very advantages which the small size brings) but “numbered 
up”:  operated in large numbers in parallel. Figs. 1 and 2 show typical alternatives of distribut-
ing the total supply flow into the large number of paths through the microdevices. Usually, a 
reverse process of summing up the flows takes place on the exit side. Altogether, the flow di-
vision and branching may occupy more space than the actual fluid processing devices. Finding 
the optimum configuration is a task far from simple as it may perhaps seem to be. There may 
be also special reasons for using the flow distribution networks: the two systems of inlet 
branches in Fig. 3, bringing close together two different fluids, solve the task of fluid mixing, 
rather  difficult in   microfluidics where  the typical low Reynolds numbers  lead to absence of 

    

turbulence and micro-mechanical stir-
rers tend to be rather tricky. In some 
particularly sophisticated versions, es-
pecially on the downstream side, the in- 

      
Fig. 1 (Left)  A typical multi-level branched distribution system supplying fluid into a number of fluidic devices 
operated in parallel. The mirror arrangement of branches on the exit side performs the reverse task of flow sum-
mation to produce the desirable large output.  
Fig. 2 (Right)  The branching may be replaced by a common manifold chamber open into all microdevices in 

parallel. Similar common collector vessel is again on the exit side. This layout may conserve space, but is ob-
viously not favoured by natural selection in living beings: it is difficult to secure equal flowpath length needed 
for equal distribution of flows into all microdevices.  
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Fig. 3 (Left)  Principle of one type of  microfluidic mixers. Two independent inlet channel systems (in two paral-
lel planes of a multi-layer arrangement)  produce interleaved strips of the two mixed fluids - typical for most mi-
crofluidic (no turbulence) mixers. Strips are thin and this reduces the distance to be traversed further downstream 
by Fickian low Re diffusion which finally removes the concentration gradients.  

Fig. 4 (Right)  A sketch from Leonardo da Vinci’s notebook [2] depicting his theory of tree branching: the total 
cross section of branches at each branching level constant and equal to the cross section of the tree trunk.  

dividual flows mutually interact, Fig. 17. At any rate, an effective design is increasingly im-
portant as microfluidic systems tend to be more and more complex. There are many variables 
and choice of optimality criteria is not obvious. Almost universally demanded basic require-
ment is to secure as much as possible identical conditions for all microdevices. This requires 
equal flowpath lengths, difficult to maintain in the alternatives shown in Figs. 2 and 5.  
      The branching task was solved by Nature in higher living organisms which require the 
flow  division  to  supply  nutrients  for sustaining  the  cells, “micro-devices”,  which are also  

Fig. 5 (Left)  Human respiratory system up to and including the -th branching level (i.e. without the 
smallest-level branches, the inclusion of which – since they approximate a space-filling fractal - would 
make the branching design impossible to follow).  

Fig. 6 (Right)  Branched supply system of cauliflower. Even though at the final level the “microdevices” are 
effectively on a surface, the branching principle is used rather than the principle of the membrane Fig. 7.
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Fig. 5  The principle of a membrane, 
evolved from the common manifold 
principle Fig. 2 by decreasing the size 
and increasing number of micro-
devices  so that they occupy a surface 
perpendicular to the (local) flow di-
rection. To save space, the membrane 
surface may be convoluted. The prob-
lem is how to achieve an equal distri-
bution of flow into the devices, which 
must exhibit high hydraulic resistance 
to approach this goal. 

"numbered up" rather than scaled up. Of many conceivable arrangements how to supply the 
cells, natural selection found and promoted as the most effective principle of the flow division 
the multi-level branching, with tube sizes progressively decreasing at each branching level. 
Mammalian respiratory (Fig. 5) and cardiovascular circulatory systems are an example. Also 
botanical organisms, plants, use the branching principle – Fig. 4, 6.  The identity of conditions 
at the cell level is achieved by maintaining sameness of hydrodynamic conditions in daughter 
tubes at each branching level, where the small number of branches makes the task easier.  

Designers of microfluidic systems can learn many useful lessons from the natural opti-
mum solutions.  It is, of course, necessary to keep in mind the different conditions in man-
made branching systems:  

a) The round tube cross sections are not used in microfluidics, where the micro-manufacturing techniques 
preferring planar designs. The space-filling tree of Fig. 6 cannot be directly simulated.  

b) In plants – especially trees, the case studied already at about 1500 by Leonardo da Vinci [2], Fig. 4 – the 
branching laws are strongly influenced by the different underlying principle. The long plant cells pass through 
several subsequent branching levels, making inevitable the constancy of total cross sectionals.  
       c) Plants are not static. They grow continuously and the branching system must be arranged so as to cater for 
the necessary presence of budding new branches.        

d)  In pulmonary systems, the diffusion across the pipe walls becomes progressively important with the 
branching level as the size decreases. Optimality criteria valid for convective transport at large scales cease to be 
applicable at the diffusion-dominated levels.   
       e) The mammalian distribution trees operate in unsteady periodic flow regimes. In respiratory systems the 
flow direction is reversed at each half of the operating cycle. This double (forward and backward) use of the 
same branching tubes saves space (and tissue) but makes the hydrodynamics more complicated. Perhaps some-
what strangely, this flow reversation principle is not used in the cardiovascular circulatory system. Nevertheless 
the hydrodynamics is also complex there, due to the operation in pulsatile regime. 

        Despite the dissimilarities, it is useful to consider the mammalian arterial systems as 
a reference. With the number of terminal microdevices of the order of 1010 (= the num-
ber of capillaries in human cardiovascular system) and much deeper branching levels 
the natural solutions are more advanced than contemporary microfluidics. Investigated 
by a number of researchers, they provide useful background data to verify the derived 
relations.  

2.  Branching parameters: 

       In the typical case of a multi-level branching, Fig. 8, a pipe belongs to the branch-
ing level k if there are k branchings between it and the input “aorta” (level 0). The dis-
tribution network is composed of total K branchings in each flowpath between the aorta 
and the end level micro-devices - "capillaries" (level k = K). For simplicity of this in-
troductory discussion, it is useful to consider a system of circular cross section pipes 
with negligible pressure drops associated with the bifurcation or junction processes – 
so that the pressure conditions are determined by the pressure drops across the pipes 
due to friction. Length of a typical branch at an intermediate level  k  is  lk,   and its  dia-
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Fig. 8  Basic parameters of the multi-level branching: at the level k  between the aorta (k = 0)  and the capil-
lary (k = K)  there are Nk pipes. The branching factors nk,, βk, γk ,… are the ratio of the distal to proximal 
quantity. Very often – but not necessarily – the system is self-similar with identical value of the parame-
ters at each branching level. 

meter is dk .Geometry of the branching is characterised by the distal-to-proximal chan-
nel size factors:   The geometric factors are diameter ratio (Fig. 8) 
                                                               βk =  dk / dk-l               … (1) 

and  the  length ratio              γk = l k / l k-l                            … (2)   
      Because the essential requirement is the equal distribution of the flow into the 
branches, the discussion may be limited to equipartition branching, with all daughter 
branches at a level k  identical.  The kinematic parameter  of the branching is the veloc-
ity ratio 
            1kkk w/wu −=                 … (3)
where velocity wk is averaged over the cross section and, in pulsatile systems, over 
time. The ratio of pressure drops across the branches is 
                                                             1kkk P/Pp −∆∆=                              … (4) 

and the ratio of the power dissipated by friction in the branches 

                                                                                                               

The total number of branches at a level k  (assuming a single inlet pipe, n0 =1) is 

                                                 k21k n...nnN =  =  ∏
=

=

kj

1j
jn   

where           1kkk N/Nn −=                    … (6)   

The most popular alternative in man-made systems (e.g. Fig. 1) are the bifurcation 
networks with   2nnk ==  at all k levels. Fig. 8 presents the trifurcation case 3nnk ==
and Fig. 13 the rather exceptional quadrifurcation 

To use the available space efficiently, the branching pattern resembles a space-
filling fractal – of course not sharing its theoretical property K → ∞  and its non-
integer dimension. Like fractal objects, the networks are typically self-similar, not 
only  with nnk = , but also the same values of the geometric factors βk =   β and  γk =  γ
at all k levels. 
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In the self-similar cases, the expression for the number of all branches at the level k  
simplifies to 

                                                    Nk = nk                                                         … (7)   

3. Analysis – pulmonary and cardiovascular natural branchings 
  The goal is to identify the dependence of the four parameters βk ; γk ; uk ; pk on the 

branching number nk. Some of the relations between them, which restrict the degrees of 
freedom, are reasonably valid while others are rather speculative:  

A)  The first, generally most plausible assumption is a straightforward consequence of 
Castelli’s version (constant volume flow rate) of the mass conservation law.  Under the usual 
simplifying conditions of incompressibility v = const and assuming zero capacitance (no fluid 
accumulation) in the network,  there is the same proximal and distal total volume flow rate 
at all branching levels   

                          4/wdNVN4/wdNVN 1k
2

1k1k1k1kk
2
kkkk −−−−

•

−

•
=== ππ                                 

so that from eqs. (1), (3), and (6)          1un k
2
kk =β                                                 … (8)  

B) Accepting the simplification of the node between connected branches behaving 
as a constant pressure space, the pressure drops are only due to frictional hydraulic 
losses in the pipes. Another assumption (somewhat more forced) of the losses ∆P
being governed by the Hagen-Poiseuille law may be then accepted, with the resultant 
linear dependence on the volume flow rate (where  – resistance): 

     

In fact, most pipes in typical branching networks are usually not long enough for 
the flow being fully developed, as the Hagen-Poiseuille law assumes. Nevertheless, 
this may be perhaps at least a suitable starting point. 

                                            
4
k

k
dv

128
R

π
ν= l k                      

                                 
- which means  ∆Pk ~ lk wk / dk

2    
or                                                           pk βk

2 = γk uk                         … (9)  
It should be noted that assuming the Hagen-Poiseuille law validity leads to the expres-
sion for the power  dissipated in a particular pipe branch as:   

                                                                                        
                                          

                                                                                                            …  (10) 

         ……………………………………………………………………………………………………………………………………………………………………………..                      

 C) The isokinetic alternative
      The most popular version of engineering branching layouts, the (da Vinci's) isokinetic
branching u = 1, reduces eq. (8)  to 
                                                             2/1

kk n−=β                                         … (11)  

In particular, for the bifurcating (n = 2) self-similar (uk = u = 1,  nk = n)  isokinetic  case, 
there is for all branchings: 

               β = n-1/2 = 0.707, γ = n-1/3 = , u=1, p = n2/3 = 1.587
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However, data for naturally developed fluid flow branching networks do not support 
this alternative to be the best solution. In particular, in cardiovascular systems the mean 
velocity wK  of blood flow in the capillaries  (k = K)  is much slower than in the aorta. In 
human arterial system the ratio of capillary/aorta velocities is 
                                                        wK / w0 ≈ 10-3 

         …………………………………………………………………………………………………………………………………………………………………………….. 

C)  A different alternative for the third assumption was introduced by Bengtsson & Edén 
[8]. It states that arterial systems are built with constant power dissipated per unit pipe 
wall area. This is a reasonable requirement for a biological system, securing an equal 
stress distribution among all its constitutive cells, keeping a well adapted general equilib-
rium in the body.  

The constant power loading (power per unit mantle area  π d2 l /4 )  in both proximal 
and distal branches at the k-th level meets the condition 

                                 
which, in view of eq. (10) leads to    

                                                                                             ...(12)
Inserting this relation into eqs. (8) and (9) results in  

                                                ...(13)
and the relation between the two remaining undetermined factors 

                                                  ...(14)
D) The last condition to be met in biological organisms follows from the assumption of the 
branching network being volume filling. For the assumption l , necessary for validity of 
the Hagen-Poiseuille law, 

l  = l
γ           ...(15)

Indeed, eqs.(13) and (15) mean β γ the arteries become more elongated as the 
branching level increases, leading to better agreement with l ,. If the tubes were not elon-
gated, the condition D would become  l  = l resulting, due to (13), in    
                                                            γ                  ...(16)

        

It is interesting to consider order-of-magnitude numerical values for human arterial system - 
mainly according to [8]. The basal metabolism of roughly 100 W corresponds to specific power 
of the order 1 W /kg. Typical cell size is  10-6 m and density 103 kg/m3, so that the dissi-
pated power per typical human body cell  is 1 pW.  Average speed of flow through the capillar-
ies is of the order of  = 10-3 m/s and the diameter of the capillaries roughly dK =  20.10-6 m,
the pressure drop across a capillary is approximately  3 kN/m2, so that the dissipated power is of 
the order of 10 W per capillary. The length of a capillary being of the order of 10-3 m, this 
power is dissipated over the mantle area ~ 103 m2, where there are roughly 1013 cells; thus the 
power dissipated  - the mechanical power load on each cell – is also of the order of  1 pW. 
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4. Comparison with data 
 The branching laws derived to meet the above condition may be compared with data 
available for mammalian cardiovascular [7] and pulmonary  [5, 6] networks. In the self-

similar branchings, the dimensionless eq.(13),  is satisfied 

with   at each level .  This value of the exponent –2/5 is 

shown to hold both in Fig. 9 for the human arteries and in Fig. 10 for mammalian lungs - in 
the latter case, of course, only in the convection-dominated region of interest here, at small 

branching levels  

Fig. 9 (Left)  Dependence of the diameter  of human arteries on the branching level k, which is characterised 
by the number of branches . The slope of constant dissipated power loading of the arteries wall fits the data 
of Schnek [7] (the shaded area indicates typical uncertainty) visibly better than the isokinetic branching law.  

Fig. 10 (Right)  Measured [5, 6] diameters  of mammalian bronchial tubes at various branching levels   
(characterised by ). Above the small size dominated by the diffusion across the walls, the slopes correspond 
well to the dependence derived for the constant dissipation per tube mantle area. 

Fig. 11  Measured lengths  l   of human arteries at a branching level k, again characterised by the number of 
branches  [7]. compared with the slopes corresponding to volume filling by long tubes, slope -1/3 eq.(15), 
and by tubes of  larger diameter-to-length ratio, slope -1/5 eq. (16).  
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        Similarly, the distribution of human arterial lengths in Fig. 11 supports reasonably the 
space filling law γ for narrow long tubes, eq. (15). The scatter, however, does not 
completely exclude validity of short-tube law eq. (16) – except at small k, where filling the 
space by short tubes is out of question anyway. 

5. Optimality criteria dictated by manufacturing technology 
        Microfluidic flow distribution networks have to meet criteria similar to A, B, C, and D - 
but dictated by technological rather than biological factors. The contemporary planar manu-
facturing methods lead to different geometric conditions. Typically, the channels are etched to 
a constant depth  everywhere (Fig. 12). In the geometric branching factor β  the diameter 
ratio is replaced by the ratio of channel widths (Fig. 12)

                                                               βk =   bk / bk-l                                                                            ... (17)

      The criteria A, B, and D, adapted accordingly to these geometric constraints are then: 
A)      β  =                                                                                … (18)  
B)       = γ        α = β  = γ β                                     … (19) 

D) Plane filling property                    β γ  =                                                … (20) 

        The power loading of channel surfaces, the basis of the criterion C for biological organ-
isms, is hardly of importance there and has to be replaced by a different constraint.  
       Practically more important is the overall pressure drop across the branching. Alterna-
tively, this criterion may be formulated as desirability of small power dissipated by friction. 
             

    
Fig. 12  The -scheme of bifurcating supply channels into microfluidic devices at end-points  distributed over 
the plane (rather than in-line as in Fig. 1). If the fluid is not stored, consumed, or left to leave (irrigation, imping-
ing micro-jets), the design is complicated by the necessity of multi-layer configuration providing the space for 
the exit network in another parallel plane. 
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This, however, cannot be the decisive criterion alone as it would simply lead to the channel 
cross sections as large as possible together with short channel lengths. This would jeopardise 
the paramount requirement of equal distribution of the flows – because it would tend to lead to 
the membrane case Figs. 2, 5 with its problematic flow distributions among the channels.   
      In fact, the large width of the distribution channels is likely to cause design problems. 
This is particularly obvious for the microdevices distributed in the plane, Figs. 12, 13, 
rather than in line as was the case in Figs. 1, 15. The devices in Fig. 12 are cooling mi-
cro-nozzles, generating impinging jets. Ideally, the endpoints of the distribution system 
should cover the plane uniformly. However, if the widths of the supply channels are 
large, it is difficult to fit them between the nozzles. The designer is forced to concen-
trate the nozzles in clusters with voids between the clusters – if the distribution in the 
plane is to be regular and the con dition of equal path lengths to the nozzles is to be 
met. The problem is more obvious for larger number n of daughter channels, Fig. 13. A 
non-isokinetic branching law  β  , making the placement of the supply channels 
easier, is welcome even if it means increased total dissipative loss.
      Another reasonable optimality criterion is the small total volume of the distribution net-
work. It may be a useful design goal because of the usual supreme requirement placed on mi-
crofluidic systems - their small overall dimensions. Under the common condition of incom-
pressibility, the small total volume is equivalent to minimum residence time. This is may be 
an important criterion especially for transitional regimes like start-up, rinsing, change of re-
agents in microchemistry, or depressurisation. Characteristically, an optimisation with respect 
to this criterion alone would lead to extremely narrow channels, the very opposite to the con-
sequences of applying the pressure loss criterion. 
       Obviously, a compromise choice is needed. Seemingly taking into the account both as-
pects is minimising the power density – power dissipated per unit volume. This is equivalent 
to requesting as the criterion C 

      α / ( β γ) =                                             ...  (21)   

This, unfortunately, is equivalent to the da Vinci's isokinetic , β = , already dis-
missed as leading to the excessively large substrate area occupied by the low  level chan-
nels. 

  
Fig. 13 (Left) A layout with end-points across a plane: quadrifurcation n = 4 scheme of alternating "+ "and "x
crosses (shown here again in the "negative"). Similar to Fig. 13, the necessary space for the wide supply channels 
makes achieving an equidistant end-points distribution practically impossible if the flowpaths are to be of the 
same lengths.  

Fig. 14 (Right) Values of the branching parameters evaluated with the compromise criterion C with different 
dissipation weights  σ  for the bifurcating branchings.
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       A more general alternative is to place a different importance weight on the dissipation by 
chosing 

 σ α / (β γ) =                                                                  ...  (22)  

- with the weight factor σ  adjustable according to particular conditions. This adjust-
ability permits covering the whole range between the the minimum volume σ   or 
even σ and the more emphasis placed on minimal losses with σ . The latter, of 
course, is more important in devices spending most operation time in steady regime 
where the minimum residence time is of secondary concern. The corresponding values 
of the branching factors u, β,  γ, α, p are plotted as a function of the chosen  σ  in Fig. 
14, valid for the bifurcating network. Note that the factor u of velocity distribution in the 
branches varies with σ  equally as the length ratio factor γ, also the pressure and power 
changes coincide.  The velocity change in the branching is  

                                                                                                                                     ...  (23)

- so that velocity is lower in the daughter channels for σ corresponding to the larger
channel widths factor   

                                                                                                                                                    ...  (24)
     A different requirement replacing the filling of the plane may be used if the task is to dis-
tribute the flows into a device array positioned along a line, such as in Fig. 1. A detailed ex-
ample of such branching network with  typical channel bends at inlet as well as at the outlet is 
shown in Fig. 15. Contrary to the placement in the plane, here is no strong motive for the non-
isokinetic branching law   β It is easy to derive the expressions for the channel 

length lk  decrease with progressing branching 
level k. If the relative pitch a/bo of the endpoints 
is within reasonable limits, the rounded geome-
try – surprisingly perhaps – has no effect on the 
bifurcation factors  γ and β, the values of which 
are the same as derived above for the optimality 
condition of filling the plane.
     Similarly usually negligible effects exhibit 
also other alternatives with sophisticated geome-
try – such as e.g. with inclined channel axes and 
different relative magnitudes of the rounding 
radii. 

6. Interaction of flows in the nodes  
       All discussions above use the simplicistic as-
sumption of constant-pressure behaviour of the flow 
division – and, on the downstream side, summation 
- nodes. The fact that the consequences agree reaso- 

Fig. 15  Planar microfluidic flow distribution network with 
end-points distributed along a line: bifurcating isokinetic  n = 
= 2, u = 1, K = 4 self-similar geometry complicated by the 
rounded channel entrances and exits. The derived expressions 
may be easily generalised to non-isokinetic  cases with various 
channel shapes and parameters of the geometry.
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Fig. 16 (Above) Example of interacting flows in 
the downstream summation node: head-on colli-
sion with the opposing flow accelerated in the 
nozzle inhibits the neighbouring flowpath. This 
may be useful e.g. to keep the neighbouring up-
stream device flooded.  

Fig. 17 (Right) Another dynamic interaction of 
flows in the summation node. Jet-pumping effect 
is used to promote the neighbouring flow. This 
way, the network shown on top generates clean-
ing flows to remove other fluids from the parallel 
paths in a fluidic sampling system [15, 16] to 
prevent cross-contaminations between various 
fluid samples.  

nably with existing data are more a reflection of the current initial stage of the branching prob-
lem investigations rather than a non-importance of the real node behaviour. The need for a 
more precise description is likely to arise in foreseeable future. There is, fortunately, an al-
ready available theory for the node behaviour, e.g. [10, 11, 12, 13, 14]. In fact, the behaviour 
may be quite complex – and there is a number of useful operations which the specially ad-
justed nodes can perform. Usually such an operation takes place at higher Reynolds numbers, 
the flow interactions be of dynamic nature. For example, instead of just the passive flow 
summation in the downstream network, the flows may be accelerated in a nozzle and thus ei-
ther mutually inhibit (Fig. 16) or promote (Fig. 7) themselves. This is of importance in those 
systems where the flows are not equal – mostly due to the effects taking place in the endpoint 
devices. 

. Conclusions   
        Increasing complexity of microfluidic flow distribution networks places increasing im-
portance on their effective design. It may be tempting to base their analysis on properties of 
fractals, with which the flow distribution networks often  share some features, in particular the 
usual self-similarity. However, the branching level K in current microfluidics is rarely large 
enough to justify this approach. Present analysis actually shows that quite useful laws of op-
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timum branching may be derived from rather simple criteria, labelled here A, B, C, D. The 
optimality there has the form of conservation condition for some physical property.  

          The validity of the applied point of view is demonstrated in this paper by showing a 
good agreement with known data on naturally evolved fluid flow branching networks in living 
organisms. The comparison shows that reasonable solutions may be obtained even with mod-
est models which need not go very deep into the fluid mechanics of the branched flows. 
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