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Summary: The authors are engaged in development of adaptive analysis of RC
concrete frames using the microplane model. In this analysis some parts of
frame are modelled by 3D finite elements. Therefore several concepts of three-
dimmensional analysis of a reinforced concrete beams were tested. Different finite
elements and computational schemes were implemented into FEM code and results
of numerical verification have been introduced in this work.

1. Introduction

In this paper the use of the microplane model in an analysis of reinforced concrete beams is
discussed. The microplane model is generally a constitutive, fully three-dimensional model ca-
pable to describe concrete in its very complex behaviour. Thanks to its qualities, the microplane
model is convenient for simulations of experimental results and a comprehensive analysis of
various structures from concrete. In particular, the authors have focused on RC frames and have
proposed Adaptive Analysis of RC concrete frames with microplane joints. It is based on a geo-
metrical model of frame compound of beams and 3D elements (bricks). The microplane model
is applied only on bricks, that will be used for segments of the frame with significant nonlinear
strains. The rest of the frame will be modelled by beam elements with fibered cross-section,
which partly allows simulation of nonlinear behaviour of material.

To get an appropriate three-dimmensional model of RC beam the authors implemented into
FEM code a linear 8-node solid element with rotational degrees of freedom. Its advantage
against a common linear 8-node solid element is its six degrees of freedom per node. So it can
be combined with both truss element (three DOFs per node) and beam element (six DOFs per
node). Because the solution time of a commonly used nonlinear static analysis is rather large
the authors employed also explicit dynamic relaxation analysis. All above mentioned elements
and computational schemes was tested for a fixed-ended beam loaded with mid-span transverse
point load.
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2. Microplane Model

The classical constitutive modelling approach is based on a direct relationship between strain
and stress tensors and their invariants. Contrary to it, constitutive relations of the microplane
model for concrete are formulated in terms of strain and stress components on planes of arbi-
trary spatial orientation, so-called microplanes. This approach excels in conceptual simplicity
and allows straightforward modelling of anisotropy and other features related to planes of dif-
ferent orientation. The penalty to be paid is the great increase of computational effort. Although
the microplane theory was originally proposed for plastic behaviour of metals, it can be gen-
erally used for any type of material including concrete [Bažant 2000, Caner 2000]. The rela-
tionship between micro and macro level is obtained by projecting strain tensor to the particular
microplanes (so-called kinematic constraint) or by projecting stress tensor (static constraint).
Then constitutive relations between microstrains and corresponding microstresses are evalu-
ated (the constitutive relations can be defined in different ways, depending to it we distinguish
four models M1, M2, M3 and M4). The missing link (between micro and macro stresses for
kinematic constraint and between micro and macro strain for static constraint, respectively) is
obtained by application of the principle of virtual work. Such kind of a material model is capa-
ble to describe the triaxial nonlinear behaviour of concrete including tensional and compressive
softening, damage of the material, different types of loading, unloading or cyclic loading.

The microplane model is numerically extremely demanding - computation of the stress ten-
sor in a single integration point involves the strain projection to microplanes, the evaluation of
local microplane constitutive laws (which may lead to iteration) on each microplane and the ho-
mogenization procedure for computing the overall stress tensor. Moreover, the tangent stiffness
matrix can be hardly obtained. For some microplane formulations, there is no direct formula
and the only possibility is to construct stiffness from its definition. But this is a very expensive
procedure. Due to the lack of tangent stiffness one can use the initial elastic matrix for the
whole analysis, but this will lead to a very poor convergence. Therefore, the use of implicit
methods, which require the stiffness matrix, is cumbersome, due to an extremely slow iteration
process.

That is why dynamic relaxation method based on explicit time integration is more efficient.
In addition, for nonlinear problems it is convenient to use optimum or quasi-optimum loading
minimising inertia forces.

3. Computational Scheme

1. Brief review of the central difference explicit integration method This method is
based on the direct integration of the governing equilibrium equation. The equation in time t
can be written

Mr̈t +Cṙt + F t(rt) = Rt , (1)

where M and C represent the mass and damping matrices of the discretized system, re-
spectively. Rt is the load vector and F t is the vector of real internal forces at time t. The F t

vector is evaluated using constitutive relations, the microplane model in our case. The new val-
ues of displacement, velocities and accelerations at time t + ∆t are computed from discretized
equilibrium equation at time t using the known values of displacements r , velocities ṙ and
accelerations r̈ at time t. As assumption about the evolution of these characteristics in interval
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〈t, t + ∆t〉, a simple differential scheme is used

ṙt = (rt−∆t + rt−∆t)/(2∆t) , r̈t = (rt+∆t − 2rt + rt−∆t)/∆t2 . (2)

Substituting Eqs (2) into Eq. (1) and expressing it in an incremental form, we obtain the
following relation(

M
1

∆t2
+C

1

2∆t

)
∆rt = Rt − F t +

(
M

1

∆t2
−C

1

2∆t

)
∆rt−∆t , (3)

where ∆rt = rt+∆t−rt. From this equation, the unknown displacement increment ∆rt can be
computed. The corresponding vectors of velocities and accelerations can be easily computed
using

ṙt = (∆rt + ∆rt−∆t)/(2∆t) , r̈t = (∆rt −∆rt−∆t)/∆t2 . (4)

Particularly, the use of diagonal mass matrix M is assumed. If dumping matrix C is
expressed in the special form of Rayleigh dumping C =α M (α∈�), one does not need the
stiffness matrix. Typically, the nonequilibrated internal forces are applied as loading in the next
time step. These choices significantly simplify the solution of the problem and lead to a very
efficient computational scheme, which can be parallelized in a straightforward way.

2. Dynamic relaxation using optimum load time history for nonlinear analysis Dynamic
relaxation is used in dynamic structural analysis programs based on explicit time integration
schemes to make static analysis possible. The solution of the static problem is found as the ulti-
mate settled state of the associated transient dynamic problem. By applying dynamic relaxation
we obtain efficient algorithm. Nevertheless, there are drawbacks obstructing the efficient use of
this method in nonlinear problems. Conventional dynamic relaxation employs the step function
for the load time history. Inertia forces play a significant role in the initial phase of motion
before they decay due to damping. In problems involving nonlinear path dependent materials,
the final settled state may then differ from the state that would be reached if proportional static
loading were applied. Both drawbacks can be eliminated if a slow continuous loading is used
instead of the step load, in order to keep the inertia and damping forces small from the very
beginning. If a fixed time interval and an ultimate load level are given, the inertia and damping
forces depend on the load time history.

Required formula for calculation of the load time history was proposed in [Řeřicha 1986].
Author minimised here the vector of inertia and damping forces

yt = Mr̈t +Cṙt = ptP − F t . (5)

This equation follows directly from Eq. (1). The vector P determines the space distribu-
tion of the loading (known) and p(t) is a time-dependent factor of loading representing wanted
load time history. If multi degree of freedom nonlinear undamped systems are considered the
following equation is obtained

pt =
1

P TM−1P
F T

t M
−1P + c

τ − t

τ
, (6)

where τ is total time and c is a parameter which determines the rate of the loading process and
which is evaluated from

P Trτ =
cτ 2

3
P TM−1P . (7)

The vector rτ or the scalar P Trτ has to be guessed.
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4. Three dimensional 8-node solid element with independent rotation field

In the formulation, first given by Reissner [Reissner 1965], the symmetry of the stress ten-
sor is not enforced “a priori”. The skew-symmetric part of the stress tensor appears as a
Lagrange multiplier for anforcing the equality of the independent rotation field to the skew-
symmetric part of displacement gradient. The variational principle was modified by Hughes
and Brezzi [Hughes 1989]. This improved formulation was used as a basis for a new 8-node
solid element with independent rotation field first presented by Ibrahimbegovic 1990. In this
paper we only present a special hierarchical displacement field employed for the element. For
a further details, see the works [Ibrahimbegovic 1991] and [Choi 1996].
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Figure 1: 8-node solid element with rotational DOFs: (a) in physical coordinate system (b)
in natural coordinate system, • - corner node, ◦ - hierarchical mid-edge node.

In the given domain Ω occupied a body, the stress tensor σ is treated as a dependent variable
which is assumed as non-symmetric. Additional dependent variables concerned are displace-
ment vector u and a skew-symmetric tensor ψ which represents the rotation. We consider an
8-node solid element shown in Fig. 1. The reference configuration of the element is defined by
the 8-node mapping, e.g.

xh =
8∑

I=1

NI(ξ, η, ζ)xI (8)

where xh represents global coordinates and NI are the isoparametric shape functions

NI(ξ, η, ζ) = 1

8
(1 + ξξI)(1 + ηηI)(1 + ζζI) ; I = 1, 2, . . . , 8 (9)

Natural coordinates (ξ, η, ζ) are defined on the interval {−1, 1}. The non-conventional inter-
polation for the displacement field uh of 8-node solid element is derived from a 20-node parent
element (see Figs 1 and 2)

uh = { uh
1 ; uh

2 ; uh
3 }

T =
8∑

I=1

NI(ξ, η, ζ)uI +
20∑

J=9

N edge
J (ξ, η, ζ) ∆uedge

J (10)
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Figure 2: (a) hierarchical interpolation of edge displacement (b) degrees of freedom in a
node.

where ∆uedge
J are twelve hierarchical mid-edge displacement added to the conventional 8-node

interpolation valuesuedge
J = 1

2
(uM +uN) and N edge

J (ξ, η, ζ) are the hierarchical shape functions
given as

N edge
J (ξ, η, ζ) = 1

4
(1− ξξ)(1 + ηηJ)(1 + ζζJ) ; J = 10, 12, 16, 14 (11)

N edge
J (ξ, η, ζ) = 1

4
(1 + ξξJ)(1− ηη)(1 + ζζJ) ; J = 11, 15, 13, 9 (12)

N edge
J (ξ, η, ζ) = 1

4
(1 + ξξJ)(1 + ηηJ)(1− ζζ) ; J = 19, 18, 17, 20 (13)

These hierarchical shape functions are parabolic along the edge joining the adjacent two
nodes (see Fig. 2). The mid-edge hierarchical displacement components perpendicular to el-
ement edges can be expressed by corner nodal rotations ψM and ψN . This transformation is
carried out by the projection of displacement ∆uedge

J onto xy, xy and xy-plane and can be
written as

∆uedge
J = TMN(ψN −ψM) (14)

TMN =
1

8

⎡
⎢⎢⎣

0 −lMNz lMNy

lMNz 0 −lMNx

−lMNy lMNx 0

⎤
⎥⎥⎦ (15)

l
edge
MN = { lMNx ; lMNy ; lMNz }

T (16)

where ledge
MN is a edge vector

−−→
MN .

The resulting element possesses totally 48 degrees of freedom, three displacement compo-
nents and tree rotations at each of the 8 corner nodes. To minimize the computational cost a
14-point reduced integration was used, see, e.g., [Hoit 1995].
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5. Beam for numerical verification

For numerical testing of the above mentioned methods and elements a fixed-ended beam
loaded with transverse point load in the middle of the span was used. Bisymmetry of the struc-
ture was taken into account to reduce number of finite elements. The reduced FE mesh and
the geometry of the whole beam are shown in Fig. 3. The employed constitutive model for
concrete was based on microplane model M4. The constitutive properties for brick element of
size 30x30x30 mm were following: density ρ = 2500 kg/m3, dumping coefficient α = 0, Young
modulus E = 41039 GPa, Poisson coefficient ν = 0.18, M4 parameters k1 = 0.000228, k2 = 500,
k3 = 15, k4 = 150. Concrete with this parameters approximately corresponds to concrete B50.
The beam was reinforced with main and auxiliary longitudinal reinforcement and with stirrups,
see Fig. 3. For rods of reinforcement common elasto-plastic material model was used. The
yield stress was taken equal to either 600 MPa or infinity (106 MPa). The examples were solved
with nonlinear static analysis by default.
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180
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F = 1MN

Figure 3: The fixed-ended beam. Geometry of the whole beam, reinforcement of half of
the beam and FE mesh of quarter of the beam.

5.1. Influence of reinforcement
At first the influence of stirrups is shown. The test beam was considered with all reinforcement
and then without stirrups. Concrete was modelled with linear bricks and reinforcement with
truss elements. The yield stress was set to infinity. The comparison of load-deflection curves
for both cases of reinforcement is shown in Fig. 4(a). There is a significant point with loadlevel
equal to 0.055 in this figure. In the first part of the diagram concrete is nearly elastic in pressure
and the stirrups are inactive, both curves are similar. In the second part of the diagram be-
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Figure 4: Load-deflection curves for different reinforcement.

haviour of concrete under pressure and shear is getting significantly nonelastic and the stirrups
are activated.

Further the influence of auxiliary longitudinal reinforcement was tested. The load-deflection
curves obtained from the beam without konstrukcni reinforcement are similar to previous ones,
see Fig. 4(b).

These tests were performed especially to find out the moment of activation of stirrups. In
next examples the fully reinforced beam will be supposed.

5.2. Influence of different finite elements
In next examples different finite elements were employed. Common linear bricks and linear
bricks with drilling DOFs were used to model concrete. Truss elements and beam elements
were used to model rods of reinforcement.

The comparison of brick elements is shown in Fig. 5. Here truss elements were used, the
yield stress was set to 600MPa for case (a) and to infinity for case (b). The difference of curves is
2% in the first part of diagram, the diference after activation of stirrups increases approximately
to 4%. The solution time of the example with the bricks with rotational DOFs is 2.2 times
slower then the second one.

The comparison of truss and beam elements is shown in Fig. 6. Here bricks with rotational
DOFs were used because the beam element with six DOFs per node can be combined only
with the brick with same number of DOFs per node. The yield stress was set to infinity. The
difference of curves after activation of stirrups is approximately 4%.
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Figure 5: Load-deflection curves for different brick elements, (a) yield stress is 600MPa,
(b) yield stress is infinite.
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Figure 6: Load-deflection curves for reinforcement rods modelled with different elements.

5.3. Computational schemes
The beam without any reinforcement was solved by both the nonlinear static analysis and the
dynamic analysis with dynamic relaxation to compare time consumption, see Fig. 7. It seams
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Figure 7: Load-deflection and load-tima curves for different computational schemes.

the total times of both analyses are approximatelly the same. It is true only for this finite
element mesh. For increasing number of elements the dynamic analysis becomes faster because
this analysis contrary to the static one does not need the stiffness matrix. Further we can see
that the static analysis reaches a peak of diagram in a short time but it is very slow after the
peak. It is caused by the lack of a tangent stiffness matrix for the microplane model.

To compare accuracy of the analyses the beam with full reinforcement was computed, see
Fig. 8. The yield stress was set to 600MPa, see diagram (a), and to infinity, see diagram (b). The
obtained load-deflection curves are nearly identical. They differ only in diagram (a) behind the
peak since the dynamic relaxation analysis is not able to minimize inertia forces after a sudden
reduction of stiffness of a structure.

6. Conclusion

It this paper a three-dimmensional analysis of a reinforced concrete fixed-ended beam was
performed. Concrete was modelled by the common linear bricks and by the linear bricks with
drilling DOFs. The reinforcement was modelled by truss and beam elements. It appeared that
the best result was achieved using the bricks with drilling DOFs combined with beam elements
especially in the part of load-deflection diagram after activation of stirrups.

Further the nonlinear static analysis and the dynamic analysis with dynamic relaxation were
compared. It seems the static analysis is suitable for FEM models with low number of 3D
elements or for research of initial behaviour of beams. The dynamic relaxation analysis is not
suitable for structures where quick change of stiffness can occure.
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Figure 8: Load-deflection and load-tima curves for different computational schemes.
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