
EVALUATION OF GEOMETRICAL PROPERTIES
OF AGGREGATE PARTICLES

D. Rypl 1

Summary: The present paper deals with the evaluation of geometrical properties
of aggregate particles. Initially, a smooth representation of the aggregate particle
shape is recovered from its digital voxel based representation using the expansion
into spherical harmonic functions. The resolution of the smooth representation can
be flexibly controlled by the number of terms in the expansion. Then the geometri-
cal properties, including volume, surface area, moments of inertia, and curvature,
are evaluated using numerical integration of appropriate analytical terms. The ad-
vantage of this approach consists in the fact that it unifies the approach for the
evaluation of geometrical properties and that it allows to evaluate important prop-
erties such as the curvature or surface area, which cannot be reliably assessed from
the digital representation. The evaluated geometrical properties may be used to
classify aggregate from different sources, according to their shape and size.

1. Introduction

The design of concrete with specified properties became of increasing importance with the
wide use of high-performance concretes (HPCs), such as pumpable concrete or self compact-
ing concrete (SCC). Many concrete properties, starting from the mechanical properties as the
compressive strength and modulus of elasticity, over the rheological properties influencing the
workability of fresh concrete, up to physical properties as diffusivity and thermal and electric
conductivity, for example, are dependent on the shape and consequently also on the geometrical
properties of aggregate particles. However, accurate evaluation of these geometrical properties
is not straightforward due to rather difficult mathematical characterization of aggregate parti-
cles of random shape. The realistic description of random particles is therefore a necessary
prerequisite for proper evaluation of geometrical properties of aggregate particles and for their
incorporation into computational models representing concrete as a multiscale random compos-
ite material with realistically described aggregates.

Modern tomographic scanning devices offer a powerful nondestructive technique for the dig-
ital description of opaque solid objects. However, the resulting voxel based representation of
the object is not always appropriate for further processing. Huge amount of data related to
digital images of high resolution makes dealing with this representation quite cumbersome and
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its step-wise character complicates its integration into computational models. In the present
work, the digital representation is first used to derive a smooth representation of the aggregate
particle using the expansion into spherical harmonic functions [Garboczi 2002]. Although this
representation is not universal (it implies that the aggregate particle is of star-like shape with
no internal voids) it is suitable for almost all aggregates used in structural concrete. The sig-
nificant advantage of this approach is that the resolution of the smooth representation can be
flexibly controlled (within the resolution of the original digital representation) by the number
of terms in the expansion and that it allows to describe aggregate particles by relatively low
number of parameters. This makes this technique attractive for computational models handling
large number of aggregate particles. Moreover, the smooth representation enables also a simple
evaluation of many geometrical properties of aggregate particles which can be used to build
aggregate databases.

The paper is organized as follows. Initially, a simple digital representation of the aggregate
particle is outlined in Section 2. Its mathematical description based on the spherical harmonic
analysis is then recalled in Section 3. In Section 4, the evaluation of individual geometrical
properties based on the spherical harmonic expansion is outlined. The technique is then verified
on a few examples in Section 5. The paper ends with concluding remarks in Section 6.

2. Digital Representation of Aggregate Particle

The three-dimensional digital representation that comes out from tomographic scanning can
be interpreted as the sequence of two-dimensional gray scale digital images corresponding to
(but not necessarily physically taken at) parallel cuts through a three-dimensional object. Each
digital image consists of the grid of pixels of gray scale value related to a specific property.

In the case of the description of the shape of aggregate particles, the gray scale images can
be thresholded to black and white images, in which (let’s say) the black pixels correspond to
the aggregate itself and the white pixels represent its surroundings. Assuming that the pixel in
each image is of the shape of a square and that the individual cuts are at the distance corre-
sponding to the edge length of that square, then each aggregate particle is described by a set of
black cubes (voxels). Depending on the resolution (the physical size of the pixel), such a voxel
based representation is either too coarse (of low resolution), probably inappropriate for further
processing or sufficiently fine (of adequate or high resolution) which is appropriate for further
processing but at the cost of handling huge amount of data. An example of digital representation
of a particular aggregate particle for two different resolutions is depicted in Figure 1.

The digital representation suffers, besides the resolution demands and consequently also the
memory demands, from other drawbacks. It is well known that quantities corresponding to the
spatial dimension of the digital representation (dimension 3 in the case of voxel based repre-
sentation) can be assessed with the accuracy depending on the resolution. However, this is not
true for quantities of lower dimension, for example the surface area. Moreover, due to the step-
wise character, the digital representation does not allow to evaluate some quantities at all, for
example the curvature. This is considered as significant bottleneck especially with respect to
the integration of aggregate particles into computational models which require appropriate spa-
tial discretization of particles, because the curvature based control, serving as an efficient tool
decreasing the discretization error and ensuring maintaining the volume fraction of particles, is
simply not available.

It is therefore apparent, that an alternative description handling geometrical shapes with
much smaller amount of data and allowing precise evaluation of various quantities is desirable.
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Figure 1: Digital representation of the aggregate particle for a lower (left) and higher (right)
resolution (only the voxels corresponding to the aggregate are shown).

The mathematical description based on the spherical harmonic analysis [Garboczi 2002] seems
to be a good choice.

3. Mathematical Representation of Aggregate Particle

In the mathematical representation, the individual particles are described by a scalar function
r(η, ϕ), defined as the distance of the particle surface point from the particle center of mass
measured in the direction of spherical coordinatesη andϕ with the origin located in the particle
center of mass (see Figure 2). The Cartesian coordinates of the surface point (components of its
position vectorr) are then given by

x(η, ϕ) = r(η, ϕ) sin(η) cos(ϕ) , (1)

y(η, ϕ) = r(η, ϕ) sin(η) sin(ϕ) , (2)

z(η, ϕ) = r(η, ϕ) cos(η) . (3)

If the functionr(η, ϕ) is smooth on unit sphere (0≤η≤π, 0≤ϕ≤2π) and periodic inϕ, it can
be expressed in the form of the expansion into spherical harmonic functions as

r(η, ϕ) =
∞∑

n=0

n∑
m=−n

anmY m
n (η, ϕ) , (4)

whereanm are yet unknown coefficients of the expansion andY m
n (η, ϕ) are the spherical har-

monic functions defined by

Y m
n (η, ϕ) = fnmPm

n (cos(η))(cos(mϕ) + i sin(mϕ)) , (5)

where

fnm =

√√√√2n + 1

4π

(n−m)!

(n + m)!
. (6)
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Figure 2: Description of the aggregate particle in the spherical coordinate system.

The associated Legendre polynomialsPm
n (x) can be expressed via the ordinary Legendre poly-

nomialsPn(x) in the form

Pm
n (x) =

√
(1− x2)m

dmPn(x)

dxm
. (7)

It is however more convenient to evaluatePm
n (x) from recursive relations [Weisstein]

P n
n (x) = (2n− 1)!!

√
(1− x2)n , (8)

P n
n+1(x) = x(2n + 1)P n

n (x) , (9)

(n−m)Pm
n (x) = x(2n− 1)Pm

n−1(x)− (n + m− 1)Pm
n−2(x) . (10)

The associated Legendre polynomials for negativem are defined as

Pm
n (x) = P−M

n (x) = (−1)M (n + m)!

(n−m)!
PM

n (x) . (11)

The coefficientsanm are determined by the integration

anm =
∫ 2π

0

∫ π

0
r(η, ϕ) sin(η)Ȳ m

n (η, ϕ)dηdϕ , (12)

whereȲ m
n (η, ϕ) is the complex conjugate toY m

n (η, ϕ). The analytical evaluation ofanm is
practically not affordable (except for the case of a sphere wherea00 is the only nonzero coeffi-
cient) and it is therefore necessary to apply a numerical integration. This requires that the values
of the searched functionr(η, ϕ) are available at integration points in advance. In the presented
study, the Gaussian numerical integration is employed. Theoretically, the order of the numerical
integration should approach infinity. However, taking for the approximation ofr(η, ϕ) the final
summation

r(η, ϕ) =
N∑

n=0

n∑
m=−n

anmY m
n (η, ϕ) , (13)
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Figure 3: Representation of the aggregate particle by the spherical harmonic expansion of order
10 (left) and 20 (right).

whereN is the order of the expansion, the order of the numerical integration needed for accu-
rate evaluation of coefficientsanm and consequently also the number of valuesr(η, ϕ) known
a priori is reduced. In the present work, the valuer(η, ϕ) at integration point is determined as
the length of the segment in the direction given byη andϕ connecting the center of mass with
the surface of the voxel forming the aggregate boundary (see Figure 2 on the right).

The numerical experiments reveal that contributions of the expansion terms forn > 20 are
usually negligible and that the order 128 of Gaussian numerical integration is sufficient in most
cases. It is also important to realize that the growth of the expansion order may lead instead of
the expected improvement of the geometrical representation to the undesirable capturing of the
unrealistic digital roughness inherently comprised in the voxel based description. An example
of the representation of the aggregate particle using the spherical harmonic expansion with 128-
point Gaussian numerical integration (the digital representation from Figure 1 with the higher
resolution was taken as the input) is shown in Figure 3 for two different values ofN (10 and 20).

4. Evaluation of Geometrical Properties

After the spherical harmonic analysis is completed, the aggregate particle in a general location
is represented by the origin and unit vectors corresponding to the positivex, y, andz axes of
the local spherical coordinate system used for the spherical harmonic expansion, by the order
of the expansion, and by the set of expansion coefficients. For the actual evaluation of geo-
metrical properties only the last two parameters, the order of the expansion and the expansion
coefficients, are relevant. The remaining parameters describe the spatial location of the aggre-
gate particle and may be used for evaluation of some of the geometrical properties in the global
Cartesian coordinate system.

The analytical expression of the volume of the aggregate particle is given by

V =
∫
V

dxdydz =
∫ 2π

0

∫ π

0

∫ r(η,ϕ)

0
J(η, ϕ)drdηdϕ = (14)
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=
∫ 2π

0

∫ π

0

∫ r(η,ϕ)

0
r2(η, ϕ) sin(η, ϕ)drdηdϕ =

1

3

∫ 2π

0

∫ π

0
r3(η, ϕ) sin(η, ϕ)dηdϕ ,

whereJ is the Jacobian of the transformation from the Cartesian coordinate system to the spher-
ical coordinate system represented by Eqs. (1) – (3). The components of inertia tensorIij, where
i, j = x, y, z, are defined as

Iij =
∫
V

(δijr
2(η, ϕ)− ij)dxdydz , (15)

whereδij is the Kronecker delta. After inserting forx, y, andz from Eqs. (1) – (3) and perform-
ing the integration inr, the individual moments of inertia yield

Ixx =
1

5

∫ 2π

0

∫ π

0
r5 sin(η)(1− sin2(η) cos2(ϕ))dηdϕ , (16)

Iyy =
1

5

∫ 2π

0

∫ π

0
r5 sin(η)(1− sin2(η) sin2(ϕ))dηdϕ , (17)

Izz =
1

5

∫ 2π

0

∫ π

0
r5 sin3(η)dηdϕ , (18)

Ixy = Iyx = −1

5

∫ 2π

0

∫ π

0
r5 sin3(η) sin(ϕ) cos(ϕ)dηdϕ , (19)

Iyz = Izy = −1

5

∫ 2π

0

∫ π

0
r5 sin2(η) cos(η) cos(ϕ)dηdϕ , (20)

Izx = Ixz = −1

5

∫ 2π

0

∫ π

0
r5 sin2(η) cos(η) sin(ϕ)dηdϕ . (21)

Note that these moments are related to axes passing through the center of expansion which cor-
responds to the center of mass evaluated from the digital representation but which is likely to be
different from the center of mass associated with the spherical harmonic expansion. Therefore,
Steiner’s proposition has to be applied when central moments of inertia are to be calculated.

For the evaluation of the surface area and local curvature (at a point), the first and second
derivatives ofr(η, ϕ) with respect toη andϕ have to be computed at first. With the help of the
recursive relation [Weisstein]

dPm
n (cos(η))

dη
=

n cos(η)Pm
n (cos(η))− (n + m)Pm

n−1(cos(η))√
1− cos2(η)

(22)

they can be expressed in the form

rη =
N∑

n=0

n∑
m=−n

−anmfnm

sin(η)
Anm(η)(cos(mϕ) + i sin(mϕ)) , (23)

rϕ =
N∑

n=0

n∑
m=−n

imanmY m
n (η, ϕ) , (24)

rηη =
N∑

n=0

n∑
m=−n

anmfnm

sin2(η)
Bnm(η)(cos(mϕ) + i sin(mϕ)) , (25)

rϕϕ =
N∑

n=0

n∑
m=−n

−m2anmY m
n (η, ϕ) , (26)
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rηϕ = rϕη =
N∑

n=0

n∑
m=−n

−imanmfnm

sin(η)
Cnm(η)(cos(mϕ) + i sin(mϕ)) , (27)

where the auxiliary quantitiesAnm(η), Bnm(η), andCnm(η) read

Anm(η) = [(n + 1) cos(η)Pm
n (cos(η))− (n−m + 1)Pm

n+1(cos(η))] , (28)

Bnm(η) = [(n + 1 + (n + 1)2 cos2(η))Pm
n (cos(η))− (29)

− 2(n + 2)(n−m + 1) cos(η)Pm
n+1(cos(η)) +

+ (n−m + 1)(n−m + 2)Pm
n+2(cos(η))] ,

Cnm(η) = [(n + 1) cos(η)Pm
n (cos(η))− (n−m + 1)Pm

n+1(cos(η))] . (30)

The above derivatives are used for the evaluation of the first and second gradients ofr with
respect toη andϕ according to

rη = {(rη sin(η) + r cos(η)) cos(ϕ) , (31)

(rη sin(η) + r cos(η)) sin(ϕ) ,

rη cos(η)− r sin(η)}T ,

rϕ = {(rϕ cos(ϕ)− r sin(ϕ)) sin(η) , (32)

(rϕ sin(ϕ) + r cos(ϕ)) sin(η) ,

rϕ cos(η)}T ,

rηη = {(rηη sin(η) + 2rη cos(η)− r sin(η)) cos(ϕ) , (33)

(rηη sin(η) + 2rη cos(η)− r sin(η)) sin(ϕ) ,

rηη cos(η)− 2rη sin(η)− r cos(η)}T ,

rϕϕ = {(rϕϕ cos(ϕ)− 2rϕ sin(ϕ)− r cos(ϕ)) sin(η) , (34)

(rϕϕ sin(ϕ) + 2rϕ cos(ϕ)− r sin(ϕ)) sin(η) ,

rϕϕ cos(η)}T ,

rϕη = {(rηϕ cos(ϕ)− rη sin(ϕ)) sin(η) + (rϕ cos(ϕ)− r sin(ϕ)) cos(η) , (35)

(rηϕ sin(ϕ) + rη cos(ϕ)) sin(η) + (rϕ sin(ϕ) + r cos(ϕ)) cos(η) ,

rηϕ cos(η)− rϕ sin(η)}T ,

from which the coefficients of the first (E, F , G) and second (L, M , N ) fundamental forms of
the surface are calculated as

E = rη · rη , F = rη · rϕ , G = rϕ · rϕ , (36)

L = rηη · n , M = rηϕ · n = rϕη · n , N = rϕϕ · n , (37)

where the unit surface outer normal vectorn is given by

n =
rη × rϕ√
EG− F 2

. (38)
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The total surface areaS is defined as

S =
∫ 2π

0

∫ π

0
dS , (39)

where the differential surface areadS reads

dS = r
√

r2
ϕ + (r2

η + r2) sin2(η) dηdϕ =
√

EG− F 2 dηdϕ . (40)

The principal curvaturesκ1 andκ2 at the surface point are given by the solution of the quadratic
equation

(EG− F 2)κ2
12 + (EN − 2FM + GL)κ12 + (LN −M2) = 0 . (41)

Two local measures of the surface curvature are derived from the principal curvatures. While
the local mean curvatureH is defined as the arithmetical mean of the two principal curvatures

H =
κ1 + κ2

2
=

EN − 2FM + GL

2(EG− F 2)
, (42)

the local Gaussian curvatureK is given by the square of their geometric mean

K = κ1κ2 =
LN −M2

EG− F 2
. (43)

The corresponding global measures, the average mean curvatureh and the average Gaussian
curvaturek, are then defined as

h =
1

S

∫ 2π

0

∫ π

0
HdS , (44)

k =
1

4π

∫ 2π

0

∫ π

0
KdS . (45)

Note that all the above integral values have to be evaluated numerically (again with the excep-
tion of a sphere, in which case the analytical evaluation is affordable). In the presented work,
the Gaussian quadrature is adopted. Since the average Gaussian curvature is equal to one for all
objects topologically equivalent to a sphere, which is the case of aggregate particles and their
spherical harmonic representations considered in this work, it can be effectively used as a con-
trol tool for setting up the order of the numerical integration scheme used for the evaluation of
the geometrical properties. The numerical experiments again reveal that the integration order
128 is accurate enough in most cases.

5. Performance and examples

The above approach for the evaluation of geometrical properties is firstly verified on shapes
with known analytical results for their properties. The first candidate, a sphere, is however
too trivial to be used for that purpose. The other choice is the ellipsoid of revolution whose
properties can be also derived in the analytical form using elementary functions. Initially, two
ellipsoids centered at the origin and aligned with the coordinate axes withz axis being the axis of
revolution were investigated. Similarly as in [Garboczi 2002], prolate and oblate ellipsoids with
the axes in the ratio 1:1:5 and 5:5:1 were considered at first. The spherical harmonic expansion
coefficients, however, were obtained from the exact formulas without realizing a particular
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Figure 4: Dependence of the average deviation (top row), volume error (middle row), and
surface area error (bottom row) on the expansion order for integration order 64 (left column)
and 128 (right column). The represented object is a prolate (1:1:5) and an oblate (5:5:1) ellipsoid
of revolution.

digital representation. Except the volume and surface area, the quality of the expansion is
assessed using additional quantity, the average deviation from the exact shape, defined as

δ =
1

S

∫ 2π

0

∫ π

0

|r − rex|
rex

dS , (46)

whererex is the exact value corresponding tor(η, ϕ). The dependence of the average percentage
deviation of the spherical harmonic expansion from the exact shape as well as the percentage
error of the volume and surface area evaluated from the spherical harmonic expansion on the
number of expansion terms is depicted in Figure 4 for two different integration orders (64 and
128) used for the spherical harmonic analysis. For the evaluation of the geometrical properties,
integration scheme of order 256 was always applied. Note that since the range spanned byη
is of half size compared to the size of range spanned byϕ, the integration order inη direction
is always reduced to the half. The profiles in Figure 4 show, that the evaluated geometrical
quantities are rapidly converging to exact values with expansion order increasing up to the
value about 20. When the expansion order is further increased, the behaviour depends on the
integration order used for the spherical harmonic analysis. If the adopted integration scheme
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Figure 5: Oscillations on the oblate ellipsoid
for the expansion order 32 and the integra-
tion order 64.

Figure 6: Artificial object with 5 waves pass-
ing around the object body from top to bot-
tom.

is of sufficiently high order, the quantities remain to converge. For a low order integration
scheme, however, the approximation property of the spherical harmonic analysis vanishes and
the analysis starts to behave as an interpolating scheme resulting in oscillations around the
exact shape (see Figure 5). This is evident from the growth of the surface area error and from
the increasing average deviation which are the direct consequence of these oscillations. On
the other hand, the evaluation of the volume seems to be not affected by this effect (at least
immediately), which can be explained by approximately the same increment and decrement of
the volume due to the oscillation. The step-wise character of the profiles in Figure 4 is the
consequence of the fact, thatr(η, ϕ) (for both considered ellipsoids) is independent ofϕ and
is even inη. This implies that the only nonzero spherical harmonic coefficientsanm are those
with n even andm = 0. Incrementing the odd expansion order by one does not therefore
introduce any new nonzero expansion coefficient while keeping the existing coefficients at the
same value. All geometrical quantities thus remain unchanged. Similar profiles are observed
also for ellipsoids with the axis of revolution aligned withx or y axes. This suggests that the
integration order should be at least twice as large as the required expansion order.

The next considered object is rather of artificial shape (see Figure 6) given by Eqs. (1) – (3)
with r(η, ϕ) defined as

r(η, ϕ) = 5(1 + 2 sin2(η))(1 + 0.1 sin(η) cos(w(ϕ + 2η))) (47)

wherew is the number of waves passing around the object body from top to bottom. Two
particular examples with 5 and 10 waves were investigated. The dependence of the average
percentage deviation of the spherical harmonic expansion from the exact shape and of the per-
centage error of the volume and surface area evaluated from the spherical harmonic expansion
on the number of expansion terms is displayed in Figure 7 again for two different integration
orders (64 and 128) used for the spherical harmonic analysis. This time, however, the exact
volume and surface area are not known and therefore they are approximated by numerical val-
ues obtained from a fine tessellation (1000 inη x 2000 inϕ) of the exact shape. Qualitatively,
the obtained results reveal similar behaviour to that observed for ellipsoids. From the quanti-
tative point of view, there are some differences. First of all, when treating the object with 10
waves, 64-point integration is not enough to assess the surface area. When 128-point integration
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Figure 7: Dependence of the average deviation (top row), volume error (middle row), and
surface area error (bottom row) on the expansion order for integration order 64 (left column)
and 128 (right column). The represented object is the artificial shape with 5 and 10 waves.

scheme is applied, the expansion order of at least 25 should be used to achieve reasonable ac-
curacy. The step-wise profiles experienced for ellipsoids are replaces by a plateau-like profiles,
where the length of the plateau is related to the number of waves that have to be captured by the
spherical harmonic functions.

Finally, the geometrical properties were evaluated for the aggregate particle presented in
Sections 2 and 3. The digital representation shown in Figure 1 on the right was considered.
Since the exact shape of the aggregate particle is unknown, only the evolution of the volume
and surface area in dependence on the expansion order is shown. In Figure 8, these profiles
are presented for four different integration orders (32, 64, 128, and 256). While the volume
converges to a constant value (corresponding to the volume calculated from the voxel based
representation), the surface area is monotonically increasing on the whole range of adopted
expansion orders. This can be explained by the fact that the spherical harmonic expansion
tends with the growing expansion order to capture better and better the unrealistic voxel based
geometry, which increases the surface area toward (or even beyond) the bad value corresponding
to the digital surface area. It is therefore quite difficult to determine how many expansion terms
should be used to get the most realistic results. Unfortunately, the most reliable prompt, so
far, seems to be the visual inspection of the geometrical shape represented by the spherical
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Figure 8: Dependence of the aggregate particle volume (left) and surface area (right) on the
expansion order for 32-, 64-, 128-, and 256-point integration scheme.

harmonic expansion of a particular order (see Figure 3). The Figure 8 also reveals, that there
is a relatively significant error in the evaluated volume for 64-point integration scheme. It is,
however, not clear what is causing this aspect.

6. Conclusions

The description of geometrical shapes using the spherical harmonic expansion offers a flexible
and powerful tool for the representation of aggregate particles. Contrary to the digital voxel
based representation, it is much less memory demanding and enables a simple and reliable
evaluation of geometrical properties such as volume, moments of inertia, surface area, and
curvature. These properties can be used for the classification of aggregate particles according
to their morphological aspects and eventually for building an aggregate database. The smooth
representation based on the spherical harmonic analysis also allows incorporation of aggregate
particles into various computational models, because aggregate particles can be subjected to
spatial discretization of appropriate resolution [Rypl 2006].
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