
MODELLING OF THE RATE-DEPENDENT BEHAVIOUR OF FILLED 
RUBBERS

B. Marvalova*, V. Kloucek*

Summary:  The paper presents an application of a phenomenological material  
model for a viscoelastic stress response at large strains.  The model is used for the  
simulation  of  carbon-black  filled  rubber  in  monotonic  and cyclic  deformation  
processes  under  isothermal  conditions.  The  material  stress  response  is  
decomposed   into  two  constitutive  parts  which  act  in  parallel:  an  elastic  
equilibrium stress response and a rate-dependent viscoelastic overstress response.  
The response of a particular filled rubber in the cyclic and relaxation tests was 
measured  experimentally.  The  parameters  of  the  constitutive  functions  are  
determined  from  the  experimental  data  by  an  identification  process  using 
nonlinear optimization methods. The paper concludes with a simulation by FEM 
of the cyclic loading of a simple rubber specimen.

1. Introduction
Rubber materials are applied in various branches of mechanical engineering because of their 
damping  properties.  One  of  such  applications  is  the  cushion  of  tram-wheels  by  rubber 
segments manufactured by Bonatrans Bohumin. During the operation the segments are under 
the temporally  constant  compressive  preload  due  to  shrinkage  between the  corpus  of  the 
wheel and the hoop and under the dynamic compressive and shear loads due to the transfer of 
the vehicle weight during the wheel rotation and the transfer of torque. The static preload 
leads  to  compressive  permanent  set  of  segment  and  the  periodic  deformation  leads  to 
hysteresis behaviour and heat generation which considerably affects  properties of rubber. The 
modelling and FEM calculation of the structural response requires a constitutive model which 
captures the complex material behaviour. 

   The constitutive theory of finite linear viscoelasticity  is a major foundation for modelling 
rate-dependent filled-rubber behaviour based on the phenomenological approach. This general 
theory  is  formulated  using  functionals  with  fading  memory  properties.  The  stress  is 
decomposed into an equilibrium stress that corresponds to the stress response at an infinite 
slow rate of deformation and a viscosity-induced overstress. The overstress is expressed as an 
integral over the deformation history and a relaxation function is specified as a measure for 
the material memory  (Simo, 1987;  Holzapfel and Simo, 1996; Holzapfel, 1996; Kaliske and 
Rothert, 1997). The thermodynamic consistency requires the relaxation function to be positive 
with negative slope and to possess a positive curvature (Haupt and Lion, 2002). Within this 
restriction  certain number of decreasing exponentials can be superimposed, referred as a so-
called  Prony  series.  In  this  approach,  a  suitable  hyperelasticity  model  is  employed  to 
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reproduce the elastic responses represented by the springs, while the dashpot represents the 
inelastic or the so-called internal strain.  This process may invite a large number of material 
parameters in the model that are difficult to estimate. Another innovative approach (Haupt, 
2002, Haupt  and Lion,  2002) uses compact relaxation function based on power laws,  the 
Mittag–Leffler function (Lion and Kardelky, 2004), in describing Payne effect, and involves 
only a very few number of material parameters. 

   There  exists  another  possibility  to  establish  finite  strain  models  of  viscoelasticity  by 
considering  the  multiplicative  decomposition  of  the  deformation  gradient  into  elastic  and 
inelastic parts ( Lion 1997, Reese & Govindjee 1998, Bonet 2001,  Laiarinandrasana 2003, 
Reese 2003, Bergstrom & Boyce,1998). The  temporal behavior is determined by an evolution 
equation that is consistent with the second law of thermodynamics.

2. Model for finite viscoelasticity
The origin of the material model of finite strain viscoelasticity used in our work is the concept 
of Simo (1987) and  Govindjee & Simo (1992). The finite element formulation of the model 
was elaborated by Holzapfel (1996) and used by Holzapfel & Gasser (2000) to calculate the 
viscoelastic deformation of fibre reinforced composite material undergoing finite strains. The 
model was incorporated into the new version of  ANSYS 10.
   The  model  is  based on the  theory of  compressible  hyperelasticity  with the  decoupled 
representation of the Helmholtz free energy function with the internal variables  (Holzapfel, 
2000, p. 283) :

C ,1 , ..... ,m=VOL
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The first two terms in (1) characterize the equilibrium state and describe the volumetric elastic 
response and the isochoric elastic response as  t∞ , respectively.  The third term is the 
dissipative potential responsible for the viscoelastic contribution. The derivation of the 2nd 

Piola-Kirchhoff stress with volumetric and isochoric terms:
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where SVOL
∞ and S ISO

∞ is the volumetric and the isochoric stress response respectively and 
the overstress Q   is stress of 2nd  Piola-Kirchhoff type.
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where  Dev  . is the deviatoric operator in the Lagrangean description. Motivated by the 
generalized  Maxwell  rheological  model  (Fig.  1),  the  evolution  equation  for  the  internal 
variable  Q takes on the form (6).

 Fig. 1. Maxwell reological model 
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= Ṡ ISO ,

S ISO=J−2/ 3 Dev [2
∂ ISOC 

∂C
] ,

 ISOC =
∞ ISO

∞ C  ,

S ISO=
∞ S ISO

∞ C .

(6)

(7)

(8)

(9)


∞∈0,∞ in the  expressions  (8)  and (9)  are  the non-dimensional  strain  energy factors 

(Simo, 1987 ;  Govindjee & Simo, 1992) and   are the relaxation times which must be 
determined from experiments. The closed form solution of the linear evolution equation is 
given by the convolution integral and the recurrence updated formula (Holzapfel, 1996) for 
the internal stress:
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The material is assumed to be slightly compressible, the volumetric  and isochoric  parts of 
Helmholtz free energy function were chosen in the form: 

  VOL
∞  J = 1

d
J −12 , ISO

∞ C =c1 I 1−3c2 I 2−3 , (11)

where the parameters c1, c2  and d are to be determined from experiments. The viscoelastic 
behaviour  is  modelled  by  use  of  =2 relaxation  processes  with  the  corresponding 
relaxation times    and free energy factors 

∞ . The second Piola–Kirchhoff stress and 
the stretch in  the loading direction of  test  specimens were determined from experimental 
results. The seven  material parameters were calculated by non-linear optimization methods in 
Matlab.  

   

3. Relaxation tests
The relaxation behaviour  at different strain levels is examined in detail through  multi-step 
relaxation test. In the compression tests, a strain rate of  0,05mm/s was applied during the 
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loading path. The stress relaxation was recorded for 1200 s. Fig. 2  shows the time histories of 
force at different strain levels in compression regime. All curves reveal the existence of a very 
fast stress relaxation during the first 10 seconds followed by a very slow rate of relaxation that 
continues in an asymptotic sense. This conforms with observations reported by Haupt and 
Sedlan (2000).  Comparing the results obtained at different strain levels, it can be seen that 
relaxation tests carried out at higher strain levels possess larger over-stresses and subsequently 
show a faster stress relaxation than those at lower strain levels with lower over-stresses as 
reported also by Amin (2005). In the classical approach, equilibrium states are reached if the 
duration  of  the  relaxation  periods  is  infinitely  long.  Thus,  the  stresses  measured  at  the 
termination points of the relaxation periods are approximate values of the equilibrium stress. 
The difference between the current stress and the equilibrium stress is the so-called overstress.

Fig. 2  Multi-step relaxation experiment 

Fig. 3  Multi-step relaxation experiment and fitting

Fig.3 compares the experimental data and the curves fitted to the proposed material model by 
nonlinear  least  squares  method.  The  red  curve  approximates  the  equilibrium  stress 
SVOL

∞ S ISO
∞ . The good performance of the model in capturing the main material  features is 

obvious.

   To characterize better the viscosity properties, a series of simple relaxation tests at different 
stretch levels were carried out. In this course, a stretch rate of 0.05/s followed by a hold time 
of 20 min was used in the tests. The results are at Figs. 4 and 5.
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Fig. 4 Single relaxation tests – experiment Fig. 5 Single relaxation - first 10 s

4. Finite element simulation

The cyclic loading test was simulated by FEM with the viscoelastic material at finite strains in 
ANSYS  10  modelled  as  the  combination  HYPER  and  PRONY  options.  This  ANSYS 
implementation  was  allegedly inspired by Holzapfel  viscoelastic  model  (Holzapfel,1996) 
described above. The parameters of the model were determined by non-linear least squares 
from the results of the cyclic experiments. The capability of the material model to simulate 
the rate-dependent monotonic response of rubber  is examined in Fig. 7  by comparing the 
stress  calculated  by  FEM  with  experimental  data.  The  comparison  shows  an  excellent 
correlation  between  simulation  and  experiment  for  slow  strain  rates  in  compression.  In 
general, the accuracy in predicting the experimental response was found to be better for slow 
strain rates and in the unloading stage of compression. 
   The improvement is achievable in monotonic response prediction by considering non-linear 
viscosity phenomena in the constitutive model (Amin, 2005) and to introduce the history 
dependence of viscosities ( Lion,1997) which leads to non-linearly coupled equations which 
cannot be solved analytically. The effective relaxation times  depending on amplitude and 
temperature are usually applied (Nemeth, 2005).

5.Conclusion
Step-strain relaxation and single relaxation of a filled rubber were modelled with viscoelastic 
theory. The parameters of the model were determined from relaxation data by employing a 
nonlinear least-squares method. The proposed model is then compared with experimental data 
for filled rubber subjected to different loading histories. It is shown that the model gives good 
quantitative  agreement  for  different  relaxational  behaviour.  An  intensive  research  of  the 
mechanical behaviour of carbon black filled rubbers is currently in progress and will be the 
topic of a later report.
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   Fig. 6  Model of the experimental specimen in ANSYS ( contact coefficient of friction f = 0.2 )

  Fig. 7  Simulation of cyclic compression test in ANSYS, red=experiment, blue = simulation
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