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Summary: Expressions for velocities of elastic waves in pre-stressed solids are
derived using the third order strain energy function and the Hencky’s logarithmic
strain tensor as the measure of deformation.

1. Introduction

Acoustoelasticity describes how the velocity of the small amplitude sound waves propagating
through an pre-stressed elastic medium is stress dependent. This phenomenon is a basis for
non-destructive method to determine residual and active stresses in material and structure.

Hughes and Kelly [Hughes and Kelly 1953] introduced the theory and measured the ef-
fect of uniaxial stress on the velocity of sound waves in isotropic elastic material and have
shown how the values of the three third-order elastic constants of an isotropic material can
be determined. Later on, Thurston and Brugger [Thurston and Brugger 1964] extended the
theory to the case of anisotropic material with arbitrary symmetry and Toupin and Bernstein
[Toupin and Bernstein 1961] developed the theory further. However, all of them based their
theories on the Green-Lagrange strain tensor and Murnaghan’s strain energy function
[Murnaghan 1951]. This strain energy function is polynomial of the third order. For isotropic
material besides the ordinary Lamé constants λ and µ three third order elastic constants called
Murnaghan’s material parameters l, m and n must be used.

The frequently used Green-Lagrange strain tensor is easy and straightforward in its definition
and application, but for the linear constitutive relations gives non-realistic material response, see
e.g. [Batra 1998]. In acoustoelasticity, this property leads to the high sensitivity of the material
parameters to the small errors in velocities measurements. Then, the sign of Murnaghan’s
parameter l changes for annealed and non-annealed aluminium alloy, [Kobayashi 1998]. Of
course, all strain tensors are equal, but if the strain energy function is chosen as polynomial of
the third order, the different strain tensors give different material response and the choice of the
strain tensor is essential, see [Hoger 1999].

The material model based on the Hencky’s logarithmic strain tensor was introduced and the
wave velocities were analysed.
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2. Governing equation

The theory of acoustoelasticity superposes small dynamic deformations of an ultrasonic wave
onto a static, finite deformation. For convenience, three configurations are introduced: initial,
deformed and current configuration. The homogeneously pre-stressed configuration is called an
initial configuration and we denote the values in initial configuration by the superscript I . Thus
the coordinates of the material point in homogeneously deformed medium are xI .

The equation of motion referred to the initial configuration is
∂ Πij

∂Xj

= ρ0 ∂
2xi

∂t2
(1)

as it is used in [Thurston and Brugger 1964].
We regard Π in (1) as a function of entropy and the deformation gradient F. To obtain an

appropriately linearized equation of motion, we expand Π in Taylor series about the initial state
of coordinates xI

Πij − ΠI
ij = Aijmn

(
∂xm

∂Xn

− ∂xI
m

∂Xn

)
+ . . . (2)

with
Aijmn =

∂ Πij

∂Fmn

∣∣∣ S=0
x=xI

(3)

The deviations from xI to x are assumed to be explicitly isentropic and the tangent modulus A
is expressed in the initial homogeneously pre-stressed configuration.

3. Solution of equation of motion

We suppose the solution of the wave equation (1)

uk = uk(kmx
0
m − ωt) (4)

where ω = 2πf is the angular velocity of the propagating wave, k is the wave vector,

km = nm
ω

c
(5)

with n being the unit normal vector of the wave front and c the phase velocity. The phase
velocity c is related to the original configuration.

Substituting the solution (4) into the equation of motion (1), we obtain

Aijklklkjδjl
∂2uk

∂(kmx0
m − ωt)2

= ρ0ω
2 ∂2ui

∂(kmx0
m − ωt)2

(6)

Which can be rewritten in the system of the homogenies equations[
Aijklklkj − ρ0ω

2δik
] ∂2uk

∂(kmx0
m − ωt)2

= 0 for δjl 6= 0 (7)

or [
Aijklnlnj − ρ0c

2δik
] ∂2uk

∂(kmx0
m − ωt)2

= 0 for δjl 6= 0 (8)
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The acoustic tensor
∆ik = Aijklnlnj (9)

can be introduce. It is real and symmetric. If the acoustic tensor ∆ is positive definite, the
equation has three real, positive eigenvectors and their eigenvectors are real and orthogonal.

The waves propagating in the direction n = e1 are considered. Then the relation (8) can be
rewritten as [

Ai1k1 − ρ0c
2
0δik

]
Uk = 0 (10)

If the material is isotropic (or if the wave propagates in the directions of symmetry of an or-
thotropic material), A2111 = A1121 = A3111 = A1131 = A2131 = A3121 = 0. The system of
equation (7) has diagonal coefficient matrixA1111 − ρ0c

2
0 0 0

0 A2121 − ρ0c
2
0 0

0 0 A3131 − ρ0c
2
0

U1

U2

U3

 =

0
0
0

 (11)

The necessary condition for the non-zero amplitudes U of the propagating waves is

det

A1111 − ρ0c
2
0 0 0

0 A2121 − ρ0c
2
0 0

0 0 A3131 − ρ0c
2
0

 = 0 (12)

The equation (12) gives characteristic equation with three roots A1111 − ρ0c
2
0, A2121 − ρ0c

2
0 and

A3131 − ρ0c
2
0. They correspond to the three eigenvectors N(1) = e1, N(2) = e2 and N(3) = e3.

The first eigenvalue A1111 − ρ0ν
2 corresponds to the wave, which motion is parallel to the

direction of propagation, i.e. in the direction N(1) = e1. The wave is called longitudinal (or
pressure) wave and its velocity is

ρ0(c0L)2 = A1111 (13)

The second and the third eigenvalues correspond to the plane waves, which motions are
normal to the direction of propagation. They are called shear waves and its velocities are

ρ0(c0 S1)
2 = A2121

ρ0(c0 S2)
2 = A3131

(14)

Both the longitudinal and shear waves expressed here are measured per undeformed matrix,
it means in respect to the reference configuration.

4. Tangent modulus

The tangent modulus A (called also the first elasticity modulus, see
[Marsden and Hughes 1983]) for the general strain tensor can be found in
[Kruisová and Plešek 2005].

For investigation of small amplitude waves propagating in isotropic elastic media, the par-
ticular case for the diagonal deformation gradient

F =

λ1 0 0
0 λ2 0
0 0 λ3

 (15)
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can be used. For the Henckys’s logarithmic strain tensor lnU

lnU =

lnλ1 0 0
0 lnλ2 0
0 0 lnλ3

 (16)

are components A1111, A2121 and A3131 of the tangent modulus

A1111 = −T11

λ2
1

+
H1111

λ2
1

A2121 =
T11 − T22

λ2
1 − λ2

2

[
1− 2λ2

2

lnλ1 − lnλ2

λ2
1 − λ2

2

]
+

+λ2
2

[lnλ1 − lnλ2]
2

[λ2
1 − λ2

2]
2 (H1212 +H2112 +H2121 +H1221)

A3131 =
T11 − T33

λ2
1 − λ2

3

[
1− 2λ2

3

lnλ1 − lnλ3

λ2
1 − λ2

3

]
+

+λ2
3

[lnλ1 − lnλ3]
2

[λ2
1 − λ2

3]
2 (H1313 +H3113 +H3131 +H1331)

where T is the stress conjugate to the logarithmic strain tensor and H is the Hessian

Hijkl =
∂2ψ

∂(lnU)ij∂(lnU)kl

(17)

For the second order constitutive relations the strain energy function of the third order is

ψ =
1

2
λI2

1 + 2µI2 +
1

6
(2l − 2m+ n)I3

1 + (2m− n)I1I2 + nI3 (18)

and the stress tensor T is

Tij = λI1δij +
1

2
(2l − 2m+ n)I2

1δij + (2m− n)I2δij+

+ 2µ(lnU)ij + (2m− n)I1(lnU)ij + n(lnU)im(lnU)mj (19)

and components of Hessian of the strain energy function are

∂2ψ

∂(lnU)11 ∂(lnU)11

= λ+ 2µ+ 2lI1 + 4m(lnU)11 (20)

∂2ψ

∂(lnU)21 ∂(lnU)21

= 2µ+ (2m− n) I1 + 2n(lnU)21 (21)

∂2ψ

∂(lnU)31 ∂(lnU)31

= 2µ+ (2m− n) I1 + 2n(lnU)31 (22)
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5. Results

Using the above equations, we obtain for the three different types of deformation these wave
velocities

• hydrostatic pressure

ρ0(c0L)2 = Λ + 2µ− p

3Λ + 2µ
(−5Λ− 6µ+ 6l + 4m)

ρ0(c0 S)
2 = µ− p

3Λ + 2µ

(
−2µ+ 3m− n

2

)
• prestressed in longitudinal direction

ρ0(c0L)2 = Λ + 2µ+

[
6Λ + 6µ+ 4m+ 2l + (3Λ + 4µ+ 4m)

Λ

µ

]
t

3Λ + 2µ

ρ0(c0 S)
2 = µ+

[
−Λ

2
− µ+m+

nΛ

4µ

]
t

3Λ + 2µ

• prestressed in transverse direction

ρ0(c0 L)2 = Λ + 2µ+

[
2Λ + 4l + (Λ + 2l − 2m)

Λ

µ

]
t

3Λ + 2µ

ρ0(c0 S1)
2 = µ+

[
Λ +m− n

2
− nΛ

2µ

]
t

3Λ + 2µ

ρ0(c0 S2)
2 = µ+

[
−Λ

2
− µ+m− nΛ

4µ

]
t

3Λ + 2µ
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