
IMPROVING RAPIDLY EXPLORING RANDOM TREES METHOD

USING TWO TREES

J. Krejsa
*
, S. V chet

+

Summary: The paper is focused on increasing the speed of rapidly exploring

random trees method, used for path planning tasks. Original method uses single

tree running from the initial node. Modified version of the method uses two trees;

second one running from the goal node and nodes of both trees are occasionally

connected to form the obstacle free path from initial to goal node. Description of

the modification together with detailed comparison of both original and modified

versions is included in the paper. Modified version significantly reduces the

search time; however there are certain drawbacks mainly regarding the memory

requirements.

1. Introduction

Rapidly exploring random trees (RRT) method is a suitable method for solving the path

planning problem. The method was successfully applied on mobile robot (both walking and

wheeled) path planning task including the extended set of restrictions corresponding to the

failure state of the robot. The method proved to be reliable and fast, however, for the complex

maps it is desirable to further reduce the search time. Further text explains in detail the

modification of the method, made in order to speed up the search process, including the

comparison with the original method and discussion over its advantages and drawbacks.

2. Modified algorithm

The original method, introduced by La Valle, 1998 uses randomized data structure

sequentially expanded by creating new nodes of a tree structure in the direction of randomly

selected points. RRT starts with initial state initx searching for the goal state goalx and the

vertices of RRT must be constructed so all the nodes are in obstacle free space. Sequential

tree expansion first generates the random state randx and finds the closest node in

existing structure and new node is generated in

closestx

x distance from in the direction

towards the

closestx

randx . This step is denoted as “tree expansion” and shown in Fig. 1. When new

node meets all restrictions it is added to RRT structure and the process continues until the

* Ing. Ji í Krejsa, PhD. Institute of Thermomechanics – Brno branch, Czech Academy of Sciences, Technická 2,

616 69, Brno, Czech Republic, tel: +420 541142885, email: jkrejsa@umt.fme.vutbr.cz
+ Ing. Stanislav V chet, PhD. Institute of Automation and Computer Science, Brno University of Technology,

Technická 2, 616 69, Brno, Czech Republic

National Conference with International Participation
ENGINEERING MECHANICS 2006
Svratka, Czech Republic, May 15 – 18, 2006

paper no.
177

1

node sufficiently close to goalx is found forming the obstacle free path. The original algorithm

is described in detail in Krejsa & V chet, 2005, including the application on mobile robot

path planning and use of further node generation restrictions (corresponding to failure states

of the robot). When used for mobile robot path planning, the node description simply consists

of x and coordinates of the robot. y

1. randx = random state

2. closestx = GetClosestNode(randx)

3. newx = GenerateNewNode(,closestx randx)

4. newx = ApplyRestrictions(,closestx newx)

5. if (newx is OK)

6. RRT.AddNewNode(,closestx newx)

7. else

8. RRT.Trapped

9. end if

Fig. 1. Tree expansion pseudocode

Modified algorithm uses the same expansion procedure, but it incorporate two trees – first

starting from the node corresponding to initial state initx , second starting from the node

corresponding to the goal state goalx . Trees expansion is sequential, supplemented with the

routine connecting the nodes of both trees in order to find the obstacle free connection

between the trees (see Fig. 2).

1. repeat

2. for i = 1 to CONNECT_INTERVAL

3. initRRT expansion

4. goalRRT expansion

5. end for

6. PathFound = Connect(initRRT , goalRRT)

7. until PathFound

Fig. 2. Modified algorithm pseudocode

The Connect procedure sequentially tries to connect the nodes of initRRT with nodes of

goalRRT while keeping the connecting line obstacle free and meeting all other defined

restrictions. The procedure is called every n-th run of the expansion procedures, where n

corresponds to CONNECT_INTERVAL variable. The simplest version of Connect runs all

the combinations of nodes in both trees and checks whether the possible connection is

obstacle free. To avoid repeated checking of previously tried node combinations the already

tested combinations can be stored in lookup table.

2 Engineering Mechanics, Svratka 2006, #177

3. Algorithm comparison

Modified algorithm was compared with the original on the mobile robot path planning tasks,

using two types of maps – simple and complex, as it’s behavior might depend on the

complexity of the map. Figure 3. shows the maps (both of size 500 x 500) with described

initial and goal positions. No further restrictions apart from obstacle free path from initial to

goal position were defined for the task.

Figure 3. Sample maps with init and goal positions – simple and complex representatives

The comparison of the tree expansion for both original (top row) and modified version

(bottom row) of the algorithm for simple map is shown in Fig. 4. Total number of nodes in

initRRT in the original version and the sum of initRRT + goalRRT nodes is kept the same to

clearly view the difference in tree expansion. One can see that two trees modification faster

covers the unsearched portions of the map.

The parameter on which the search speed depends the most is the length of the step x . In

order to compare both versions of the algorithm the dependency graphs including the number

of nodes in the tree (or both trees for the modified version) and number of nodes in the

resulting path were generated for both types of the map. As tree generation is the random

process the experiment was repeated twenty times for each case and mean values and standard

deviations are included. Further the reduction of the number of nodes both in full trees and in

the path is shown, related to the higher value. Generated graphs are shown in figures 5-8.

Figures 5 and 6 show the results for the simple map, latter for the complex one. First figure

shows the total number of nodes in the tree and nodes reduction, second the number of nodes

in the path and again path nodes reduction.

As one can see in both cases there is a significant reduction of number of tree nodes

(roughly corresponding to the search time – will be discussed in more detail in discussion

section). For the simple map the reduction is oscillating in the range of 25 – 40 %, in the

complex map case in the range of 30 - 50 %, with no clear relation to the step length as

expected. Curves corresponding to the number of tree nodes versus step length show expected

U shape for the complex map, simple map does not contain enough “hard to solve” portions

for the longer steps to limit the search.

When looking to the number of nodes in the resulting paths, there is significant reduction

in the simple map case (20-30 %). This is clearly caused by the shape of the map – there is

vast open space in the top right part of the map which two trees version can easily cross in the

J. Krejsa, S. Věchet 3

connect phase, while single tree has to use several steps to cross the section. For the complex

map there is no significant change in number of path nodes, as expected.

Figure 4. Tree development in simple map – single/double tree comparison. Respective

number of nodes in the trees is 20, 60 and 130. Top row shows single tree expansion, bottom

row shows two trees expansion. Step length 80x .

step length

0 20 40 60 80 100 120 140 160 180 200 220

n
u

m
b

e
r

o
f

n
o

d
e

s

0

200

400

600

800

1000

1200

n
o
d
e
s
 r

e
d
u
c
ti
o
n
 [

%
]

0

10

20

30

40

50

tree nodes - single tree

tree nodes - two trees

nodes reduction

Figure 5. Total number of nodes in the tree depending on step length – simple map.

4 Engineering Mechanics, Svratka 2006, #177

step length

0 20 40 60 80 100 120 140 160 180 200 220

n
u
m

b
e

r
o
f
n
o
d
e
s

0

20

40

60

80

100

120

n
o

d
e
s
 r

e
d

u
c
ti
o
n

 [
%

]

0

5

10

15

20

25

30

35

path nodes - single tree

path nodes - two trees

nodes reduction

Figure 6. Number of nodes in the path depending on step length – simple map.

Step length

0 20 40 60 80 100 120 140 160 180 200 220

N
u
m

b
e
r

o
f
n

o
d
e

s

0

1000

2000

3000

4000

5000

6000

7000

n
o
d
e
s
 r

e
d
u
c
ti
o
n
 [

%
]

0

10

20

30

40

50

60

tree nodes - single tree

tree nodes - two trees

nodes reduction

Figure 7. Total number of nodes in the tree depending on step length.

J. Krejsa, S. Věchet 5

step length

0 20 40 60 80 100 120 140 160 180 200 220

n
u

m
b
e
r

o
f
n
o
d

e
s

0

50

100

150

200

250

300

n
o
d

e
s
 r

e
d

u
c
ti
o

n
 [

%
]

0

2

4

6

8

10

12

path nodes - single tree

path nodes - two trees

nodes reduction

Figure 8. Number of nodes in the path depending on step length – complex map.

4. Discussion

Advantages

Significant reduction of number of nodes in resulting tree is clear in full range of step lengths

used in experiments both for simple and complex maps. Depending on particular map

complexity the reduction can be expected in range of 25 – 50 %, which represents significant

improvement of search speed. The modification of the algorithm is simple and modified

version is easy to implement.

Drawbacks

There are two major drawbacks of the modified version of the method, both related to the

connect phase. First drawback is related to the memory usage. The number of nodes in both

trees is related to the total time of the search when connect phase is fractional of total search

time. This can be achieved by remembering what nodes were already tried to connect. In the

single tree version such remembering is simply a matter of adding boolean variable to each

node and setting it to false when the attempt of connecting the node with the goal is

unsuccessful in order to avoid further tests of given node. However, for the two trees structure

the combination of attempted nodes connections must be remembered, thus creating a

memory demand exceeding the original demand of the tree structure (considering the

common node definition, such as x and coordinates in tested case). The “failed nodes

combination” requires approximately

y

21

4
n values to remember for total number of nodes in

both trees equal to n . One can run the connect tests independently each time it is performed,

the reduction of the search time is then smaller than connect requirements and overall

performance of the algorithm is worse than single tree version. Therefore the increase of

search speed does not come for free, it requires additional memory, as in many other cases.

6 Engineering Mechanics, Svratka 2006, #177

Second drawback is again related to the connect phase. When further restrictions are

applied into new node generation procedure (e.g. limited angle range), the search in the single

tree case stops when the node is “sufficiently close” to the goal specifications (as the exact

path is not guaranteed to exist). Therefore the exact match of nodes in two trees connecting

operation is highly unlikely to appear and “close” nodes must be used instead. The definition

of “close” node then depends on the particular application and for nonholonomic constraints

the whole advantage of speeding up the process is likely to be neglected.

5. Conclusions

The modified version of RRT algorithm brings substantial reduction of number of nodes in

the resulting tree structure thus reducing the search time, when extended memory

requirements are permitted. Depending on particular application such search time reduction

can bring substantial improvement of whole application, however, the limits of the method,

mainly connected with the nonholonomic constraints must be taken into account prior to the

application.

6. Acknowledgement

This work was supported by Czech Ministry of Education under project MSM 0021630518

"Simulation modelling of mechatronic systems".

7. References

LaValle S.M. (1998) Rapidly-exploring random trees: A new tool for path planning, technical

report, Computer Science Dept., Iowa State University

Krejsa J., V chet S. (2005) Rapidly Exploring Random Trees Used for Mobile Robots Path

Planning. Egineering Mechanics 12 (4) pp. 231-238

J. Krejsa, S. Věchet 7

