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A NONLINEAR BAR ELEMENT WITH VARYING STIFFNESS
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Summary: The contribution is devoted to description of an exact bar element
with varying stiffness. The 2 theory solution is based on the full nonincremental
nonlinear (geometric and material) lagrange FEM formulation of the body motion
equations. The new shape functions of the bar element have been established with
consideration of continuous variation of elasticity and plasticity moduli, yield
stress and cross-sectional area. The efficiency and accuracy of the new elements
have been compared with the solutions of identical problems using the ANSYS
program. New finite element meets exactly all the basic equations of the bar in
both the local and global sense. The results obtained with this element are not
dependent on the mesh density.

1. Basic equations

In the static structural nonlinear analysis the equilibrium differential equations are often
expressed by the principle of virtual work. These nonlinear equations are usually linearised
with consequent rise of inaccuracies, their elimination requires increasing the number of
incremental load steps and/or iterations.

In this contribution a new approach to evaluation of equlibrium equations suggested by
Murin [3,4] is presented. In this solution no linearisation of the variation of Green-Lagrange
strain tensor is used. Thus we can obtain the exact nonlinear nonincremental formulation of
the element stiffness matrices. When total Lagrangian formulation is used, nonlinearised
equations can be derived from the equlibrium of internal and external work
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written in conventional notation. After implementation of correspondent approximation of the
displacement functions u, =@, u! we can modify equation (1) for FEM requirements in the form
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We will get basic relation which can be used for an arbitrary finite element derivation.
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Basic equations of the bar element with full nonlinear stiffness matrix were described in
previous papers [1,3,4]. These papers are devoted to description of the bar element with
constant or varying stiffness in linear elastic load condition. This paper extends this approach
to linear elastic-plastic field of loading.

2. The bar element with constant stiffness
After substitution of the straight bar shape functions
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into (2) we obtain local nonlinear elastic stiffness matrix of the element in following form
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where k, = {1+%(/1—1)+%(ﬁ—1)2} and A= u"L_ui +1 denotes stretching of the bar. By

0

implementation of the parameter A, the stiffness matrices become invariant to the rigid body
motion [3,4]. The axial stress in the bar element reached before yield stress o©; can be
calculated using formula
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Fig. 1: One-dimensional bilinear stress-strain
Loy Eep & relationship with hardening

If the axial stress exceeds the yield stress o, , it is neccesary to establish new relationship
between the stress increment and the strain at the bar. If bilinear stress-strain relation is
considered (Fig. 1) and plasticity condition in the bar is reached, it is sufficient to change the
linear elastic term k. in (4) to the elasto-plastic term £,
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The stress in the bar is then equal
c=0,+0,, (7
where
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and /L,y is the bar stretching when yield stress is reached.
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A system of nonlinear equations is usually solved using Newton-Raphson method. In this
solution process, the full tangent stiffness matrix is required. Local tangent stiffness matrix
can be obtained as the derivative of the residual force vector
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The elastic and elastic-plastic stiffness matrices Ky are then expressed by
0 -0 0 -0
K, = ALOE [1+3(/1—1)+%(/1—1)2} and K, = ALf {1+3(/1—/1y)+%(/1—/1y)2} (10)

Typical example of geometric nonlinear behaviour is the three-hinge mechanism (Fig. 4).
The dependence displacement vs. internal/global force for linear elastic solution of the bar
with uniform cross-section (Fig. 4a) is well known from literature. For bilinear elastic-plastic

behaviour this dependence is shown in Fig. 2 and comparison with the linear elastic solution
is presented.

elastic solution
bilinear plasticity - isotropic hardening
bilinear plasticity - kinematic hardening

elastic solution
bilinear plasticity - isotropic hardening
bilinear plasticity - kinematic hardening

global force F
axial force N

displacement u, displacement u,

Fig. 2: Example of equilibrium path for linear elastic and bilinear elastic-plastic material
properties von Mises two bar structure with constant stiffness

3. The bar element with varying stiffness

The straight bar element with varying stiffness is shown in Fig. 3. The cross-sectional area,
elasticity and tangential moduli are defined as the polynomial functions
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Fig. 3: Bar element with variation of the geometry and material properties in the initial
configuration

Then the variation of axial elastic and elastic-plastic stiffnesses can be written as
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where B, = A; E;, Bepi = Ai Eri and  7g.(x) , 1ep(x) describe the variation of the stiffness. If
the concept of transfer functions and constants published by Rubin [2] is used to the
derivation of the stiffness relation, the axial elastic displacement can be expressed as
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where d;, (x) is the first derivative of transfer function, which is given by the relation

u(x)=¢ u; +¢, u, :(1_

4 1 7’ ’ :
dyp (x)= w and dy; =d;p (x= L) is the transfer constant.
B

The term £k, in elastic stiffness matrix (4) has the form
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where d’, , d; = J‘(d;'Be (x))zdx, dyg = J‘(d;'Be (x))zdx are the transfer constants for elastic
0 0

loading case, which can be computed by simple numerical algorithm [3,5].
If the axial stress exceeds the yield stress ©; , the stiffness k. in equation (4) is changed to £,
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where d;, ,d;, ,d,,; are transfer constants for elastic-plastic loading case.
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The internal force and axial stress before yield stress in the bar element, can be calculated
using formulae
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and for the stress exceeding the elastic limit the internal force and axial stress can be
calculated from
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where dy;, dyp, dyg, dyp . dp dyp  are transfer constants for Young and tangential moduli

functions.
Axial stress in elastic-plastic domain can be calculated using (7) where o©; 1is the
“average” value of the yield stress function of the bar.
In the elastic state stiffness matrix Ky is expressed by
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and in the elastic-plastic state by relation
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The vector of the internal forces can be written

F, =[N -N]". (18)
These matrices can be transformed to the global coordinate system using the standard
transformation rules.

4. Numerical examples

In the numerical experiments two different solutions were compared. First solution used
equations and input values for the bar with constant stiffness (Tab. 1). Second model was
created using the bar element with varying stiffness. Selected forms of the variations of cross-
sectional area and material properties are shown in Tab. 2 and 3.

Experiments were carried out for bilinear elastic-plastic model of material behaviour with
isotropic as well as kinematic hardening.

Fig. 4: Two simply supported bars used in numerical examples

To solve our exact nonlinear bar element a code in MATHEMATICA software was developed. In
the numerical experiments we used two basic approaches to compare accuracy and efficiency of the
full exact nonlinear single bar element. To compare exact element results with results obtained by
ANSYS, four models were created:

- 1D beam model meshed with 1, 5 and 20 elements (BEAM188 element with tapered

cross-sectional area),

- 3D model using SOLID185 element to divide the model into 50 segments of layers of
elements.
In all presented solutions the symmetry of the structure was used.
Numerical computations for different types of variability of cross-sectional area and
material properties were carried out. Accuracy and coincidence of results of the new exact
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element was examined for few ratios Bpmax/Bmin ©Of the limit values of element stiffness
function (11) (see Tab. 3).

Table 1: Cross-section area and material properties for the bar with constant stiffness

shape value
=== | A4=00015m’
E | == | E=18000.10°Pa; E;= 1800.10° Pa; o, =180.10° Pa
Table 2: The geometry and material properties for the bar with varying stiffness
shape function
Al | /=3 | A(x)=0,0015 [m?]
A2 | =] | A()=0,001+0,0006x [m’]
A3 , A(x) = 0,001 + 0,0007x + 0,0007x* [m?]
A4 , A(x) =0,001 +0,001x + 0,001x* [m?]
El | —] E(x)=1,6.10"+0,4.10"x [Pa]
—] Er(x)=1,6.10"+0,4.10"x [Pa]
— 1| ox)=160.10°+40.10° [Pa]
E2 | ——1 | E®x=15.10"+0,4.10"x +0,4.10"x? [Pa]
— Er(x)=1,5.10""+0,4.10"x+ 0,4.10'x* [Pa]
—— | 0()=150.10°+ 40.10°+ 40.10°> [Pa]

Note: For ANSYS solution with one BEAM188 element the following average values of cross-
sectional area and material properties were used:

Al Aper=0,0015 m’ El | Epe=18.10"Pa; Erg. =1,8.10"Pa

A2 | Aue=0,0013 m’ Oy aver = 180.10° Pa

A3 | Age=0,0015833 m’ E2 | Eue=1,833.10" Pa; Erue=1,833.10" Pa
A4 | Ay =0,0018333 m? O, aver = 183,33.10° Pa

Table 3: Selected combinations and stiffness ratios

element stiffness function ratio Buax/Bmin
B1=Al1.El 1,25
B2=A2El 2
B3 =A3.El 3
B4 =A3.E2 4
B5=A4.E2 5

5. Results of numerical experiments

Resulting dependence for both the internal force N and global force F on displacement
u, at the common node are given in selected Figs. 5-12 at the end of this contribution.
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Figs. 5,6 show results for the bar with constant stiffness and Figs. 7-12 results for the bar with
varying stiffness.

The solution with constant stiffness and another five solutions with different variations of
stiffness given by various ratios Bma/Bmin Were compared. The most exact results were
acquired considering isotropic hardening, especially at lower values of ratios Bmax/Bmin.
Increasing the ratio Bp.x/Bmin leads to enlargement of differences between exact and ANSYS
solutions.

According to results obtained by ANSYS at least five beam elements are necessary to get
results comparable with single exact element. ANSY'S solid model resulted in nearly identical
curves.

6. Conclusions

The main aim of this paper was the comparison of the results of exact nonlinear
nonincremental solution. The accuracy and computational efficiency of this new formulation
were tested. The results of analyses lead to the following issues:

- the numerical experiments showed very good agreement between the solutions of the
exact element and ANSYS results, especially when the isotropic hardening was
considered (Figs. 5,7,9,11),

-in ANSYS, the division into at least five beam elements was necessary to achieve
accuracy comparable to single exact element,

- considerable differences appeared only for case with kinematic hardening (Figs. 10,12),

- the differences of exact element and ANSYS models results are increasing with the ratio
Bmax/Bmin greater then six, particularly near the yield stress

These determinations verify high efficiency and accuracy of the developed exact element.
Further, the results are independent on the mesh density.
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Fig. 5: Displacement vs. axial force and global reaction (bar with constant stiffness A.E; isotropic hardening)
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Fig. 6: Displacement vs. axial force and global reaction (the bar with constant stiffness A.E; kinematic hardening)



axial force N [N]

1,0x10°

5,0x10°

0,0

R. Duris

-5,0x10°

axial force N [N]

-1,0x10°

-1,5x10°

Bilinear isotropic hardening

ANSYS - BEAM188 - 1 element
—— ANSYS - BEAM188 - 5 elements
—— ANSYS - BEAM188 - 20 elements
new exact solution - 1 element
-+-- ANSYS - SOLID185 - 50 segments

-2,0x10°

T T T T T T
005 010 015 020 025 030
displacement u, [m]

T T T 1
0,35 040 045 050

global force F [N]

4,0x10° 4
Bilinear isotropic hardening
3.5x10° ANSYS - BEAM188 - 1 element
) ——ANSYS - BEAM188 - 5 elements
. —— ANSYS - BEAM188 - 20 elements
3,0x10° new exact solution - 1 element
o -=-== ANSYS - SOLID185 - 50 segments
2,5%10° 4
2,0x10° 4
1,5x10° 4
1,0x10° 4
5,0x10° ]
0,0 \/
-5,0x10* T

T T T T T T T T 1
000 005 0,10 0,15 020 025 030 035 040 045 050

displacement u, [m]
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Fig. 8: Displacement vs. axial force and global reaction (stiffness function A1.E1; kinematic hardening)
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Fig. 10: Displacement vs. axial force and global reaction (stiffness function A3.E1; kinematic hardening)
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Fig. 11: Displacement vs. axial force and global reaction (stiffness function A3.E2; isotropic hardening)
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Fig. 12: Displacement vs. axial force and global reaction (stiffness function A3.E2; kinematic hardening)
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