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MODELLING AND DYNAMICAL ANALYSISOF GEAR DRIVES
VIBRATION CONSIDERING THE INFLUENCE
OF NONLINEAR COUPLINGS

M. Byrtus, V. Zeman?

Summary: Gear drives and gearboxes are parts of many mechanical dgand
simultaneously represent main excitation sources. Theo&iims contribution is to
take into account the influence of nonlinear couplings ingbar drives and create
a general mathematical model for an arbitrary gearbox udimg modal synthesis
method with DOF number reduction. The stress is laid on nealirmodelling of
gear and bearing couplings and their influence on the dynahsgstem response
to the internal excitation. The bearing model respects reahber of rolling bod-
ies and real roller nonlinear contact forces acting betweeuarpals and the outer
housing in dependance on their deflection. The nonlineareinofdgear meshing
makes possible to respect in consequence of low static loddndernal excitation
generated in gear meshing the the gear mesh interruptiora r&sult of nonlinear
couplings, vibrations are accompanied by impact motionfsydation of solution
and chaotic motions. The presented approach to the nonliwibeation analysis of
large multibody gear drives is applied to a simple test-dpeer

1. Introduction

Large rotating systems, especially gear drives and geagoaocur as parts of many mechan
devices on one hand. But they are representans of main éxcitdurces on the other hai
Their vibration analyses are commonly performed with theuagption of the small deform
tions and linearized coupling forces. But this assumptiamoiscorrect for certain operatior
states when the influence of coupling nonlinearities is cami. Therefore the nonlinear mc
els of gear and bearing couplings are developed and the me#uef coupling nonlinearities
investigated.

In last years the subject of large rotating systems modgHhems been studied in our depi
ment. The result of this effort is a creation of modal synihesethod allowing to model systel
with complicated structures. The advantage of this methe@parate modelling of subsyste
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using different modelling tools and separate modellingis€itte couplings. Subsequently
noise radiation analysis can be performed, azfan and Byrtus (2006) have shown.

A general mathematical model of a large rotating systenudinl the flexible stator
created and solution of nonlinear dynamical response mish@ear kinematic transmissi
errors are supposed to be the main source of high-frequebations. A simple test-gearb
is used for numerical experiments to test the presented lfimgdmethodology.

2. Modédling of largerotating systems

To model large rotating system the modal synthesis methadad. This method is based
suitable system decomposition into subsystems and onaepaodelling of couplings amoi
subsystems. In our case, the gearbox can be generally desethmtoS subsystems. Tt
first S — 1 subsystems which consist of shafts with gears rotating antjular velocityw, are
described with following system of ordinary differentigjuation in matrix form as Zeman a
Hlavat (1995) showed

M, G,(t) + (Bs + wsGy)gs(t) + Koqo(t) = fE() + fO+f2, s=1,2,...,5-1, (1)

whereM,, B, and K, are symmetrical mass, damping and stiffness matrices afrtbeuple(
subsystems of order, and G, is skew symmetrical matrix of the gyroscopic effects of
same order. These matrices are usually created by meanstefei@ment method combin
with discrete parameters representing masses of rigiddjsees. External forced excitation
described by vectofZ(t). Vector £ represents the forces in spur helical gear couplings
vector f5 expresses the coupling forces in rolling-element beariA§$orce effects describe
in vectors above are acting on the subsystemlhe mathematical model of the housing
expressed in a similar way

Mds(t) + Bsgs(t) + Ksgs(t) = fE(t) + 5. (2)

Mass, damping and stiffness matrickks, Bs, K of orderng are created after discretizati
by finite element method. VectgfZ (¢) is a possible external excitation and force effec
bearing couplings is expressed by vecfdt.

The bearing model, used in our approach to gearbox modglegpects real number
rolling elements uniform distributed between the inner aunker race (see fig. 1). Let
suppose that the rolling-elemepf the bearing touches the outer race at the contact
H; ;. The forcel; ; trasmitted at this point depends nonlinearly on the rotihgment deflectio
A, ; according the Hertz’s contact theory in this way

Ai' ! A;w " ax
Fi,j = ( C]) H(Ai,j)v angm = (TJ) H(Ai,j)' (3)

The designatiorux belongs to axial deflections of rolling-elements and cqoesling axia
forces that moreover arise in the radi-axial rolling begsin The deflections arise from 1
deformation of the of the rolling elements and the raceseattntact point. Parametetsand
C depend on rolling-elements geometry, elastic modulus amsls®n’s ratio of the bearir
components, as mentioned indner (1993). Heaviside functiai corrects the contact forc
when the deflections are negative which means that the g@lements are unloaded.
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Figure 1. Scheme of a bearing coupling
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Figure 2: The ball-element bearing force characteristic

The calculation of the deflections; ; and Af% supposing the rigid inner and flexible ou
race, is in detail described in Byrtus and Zeman (2005). Figh@®vs the dependance of fo
transmitted by a rolling element on its deflection.

Then the vectorf? in equation (1) (model of rotating parts) can be expressédliowing

form
fsB == ZZ(ii,jE,j(qs) + f??ﬂaf(%))v s=1...,9-1, (4)
i

where vectorg,; ;, t describe the bearing geometry. Among bearing indiceslong only
these which correspond to bearings coupled with the suisyst Similarly, the vectorfZ in

equation (2) (model of a stator — housing) can be expressietiawing form
£§ =) (€isFilas) + €5 F (as), (5)
i

where vectore; ;, e} describe the geometry of contact points at the stator. Bgantfices:
are governed by the same conditions as above.
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In the general coordinate space
s

q(t)=1a (1), g (t), ..., g5 €R", 0= n, (6)

s=1

of the whole system the bearing model is described by theagtmhupling vector in the form

e
B 'fZB ax 1axr
=170 | =)0 (eiiFiq) + ¢5F (q). (7)
- et
fs
Vectorse; ; andc{; describe global geometrical properties of each bearingacbpoint; in
bearing: and have this structure
~ T ar rax ~ax T
cij= [ _{Zj... efj ] , ¢t = [ _(tm‘>T"' (em‘)T ] ) (8)
To stabilize the numerical simulation of the nonlinear nlates efficient to separate tt
linear part of nonlinear bearing force characteristic. Titvear part is described by stiffness ¢

damping matrices in the general coordinate space (6) andetheng force vector (7) can
then rewritten in following form

fP = —Kpq(t) — Bpq(t +ZZ ciifis(@) + €515 (@), 9

where Kz and B are global stiffness and damping bearing matrices. Theicttre depenc
on the number of rolling elements and on the nodal points tclwére they on the shafts fix
(for details see Zeman and Hajan (2005)). The bearing damping matrix is supposed
proportional to the stiffness matrix

Bp = pKp (10)

and functionsf; ; have form

o) = [ (BAL) = k@) B (@) - bydu@H80@). @D

In the same way can be expressed the funcfffiiq). The parameterk; ; represent linearize
rolling-elements stiffness that is calculated in depedarmn an external static torsional load
of drive and driven shafts as is shown in Byrtus and Zeman (2005

The force effect of the spur helical gear couplingn (1) is expressed by vector

==+ Z 5z,in(t> dza dz)a (12)

where sign "-" (minus) corresponds to driving gear and sigh (plus) corresponds to drive
gear. Vecto.; = [...,d7,,...]" is then,-dimensional extended vector of geometrical

rameters of the gear that is fixed on the shaft at the nodat poirhe forceF’, transmitted b
gearingz can be approximately expressed in the form
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where k. (t) is time dependent meshing stiffness and b, is coefficient of viscous damping of
gearing on gear mesh line. Nonlinear function f, (¢, d,) of gearing deformation d,, corrects the

linear elastic part F') of theforce ., in the phases of the mesh gear interruption. According to
FL) showniin fig. 3, thisnon-linear function is expressed in form

fz(tu dz) = _kz<t)dzH(_dz) + kz(t)(dz + UZ)H(_dz - Uz)7 (14)

where v, istooth backlash and H is Heaviside function.
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Figure 3: The elastic gearing force characteristic

Gearing deformation
d.(t) = —0L,qi(t) + 8. ;q;(t) + AL (1), (15)

of gearsin mesh fixed on shafts at nodal points: and ; expresses the relative motion of theoret-
ical contact point of teeth on the gear mesh line. Vectors g;(¢) and g; () describe displacements
of nodal pointsi and j. Thefunction A, (¢), defining kinematic transmission error of gearing z,
can be expressed by Fourier series

K
AL(t) = Z(Afk cos kw,t + Aik sin kw,t), (16)
k=1
where meshing frequenciesw, = Z7p. are functions of operation speed n [rpm] and p. = o= is
the speed ratio in relation of driving shaft of the gearbox.

Analogous to the bearing model, we can express the global gear coupling vector in general
coordinate space (6) in following way

o -
fs z
fO=1 + | =) c.F(t,q.q) + falt), (17)
f$ ==l
0

where f(¢) is vector of internal kinematic excitation generated in gear meshing that can be
expressed in form z .
Falt) = (kAu(0) + bAL0)) e (18)

z=1
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The global vector of geometrical parameters of the gearinggeneral coordinate space
has following structure

cZ:["'_5§i"'5zT,j""0T]T' (19)

For the same reason as above, it is efficient to separate lipeae part of nonlinear geari
force characteristic. Equation (17) can be then rewritbethits form

Z
£¢ = —Kaq(t) = Boq(t) + Y e.FN(t.q) + fo(t). (20)

z=1

K and B, are stiffness and damping matrices of gear couplings, whiogeture is in deta
described in Zeman and Hapan (2005) and the functioh¥ expresses the nonlinear pari
the force transmitted by gearingi.e. N (t,q) = f.(t,d.).

It is advantageous to assemble condensed mathematical ofdtie system with reduce
degrees of freedom (DOF) number, because mainly the hogaalmgystem could have too la
DOF number and this can hinder from consecutive performingaoous dynamical analys
and optimization. The modal transformations

qs(t) = "Vx(t), s=1,2,...,85, (21)

are introduced for this purpose. Matriceé¥, € R"™s are modal submatrices obtained fr
modal analysis of the mutually uncoupled, undamped androtating subsystems, where
ms (ms < ny) is the number of the chosen master modes of vibration. Tinecoafiguratior
space of the dimensian is defined by vector

a(t) =z (t), 23 (1), ..., zE@®)]",  m=)_ m. (22)

The models (1) and (2) can be then rewritten using terms (Ad)®) in the global condens
form

&(t) + <B +wG+ V" (B + Bg) V)a’:(t) + (A + V' (Kp+ Kg) V)fﬂ(t) =

Z (23)
— V(XY (eisfis(@) + e fi(a) + D e PN (ta) + falt) + fu(h))
wherefr(t) = [(FE)T, (FE@X)T, ..., (FF())"]" is the global vector of external exci

tion,
B =diag ("V,'B,"V,), G =diag (”— mVSTGSmVS) , V =diag("V;)  (24)

Wo

are block diagonal matrices)¢ = 0 holds for the stator subsystem) ald= diag (" A, ) is
diagonal matrix composed of spectral submatrieds € R™" of the subsystems.

3. Dynamical Analysis

The mathematical model of gear drives is strongly nonlinear due to the possibility of gee
interruption and in consequence of nonlinear bearing couplings respecting loss of co
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some contact points in dependance on position of journateeo perform the dynamic
analysis the condensed mathematical model (23) has to &fdraned into the state space
use the direct-time integration method. The state spa@sizitbed with vector of state variab
in the form

w(t) = [®1 (1), &3 (t), ..., ®5(1), ®1 (1), 23 (1), ..., w5(1)]", (25)

where the vectors:(t) were mentioned above. Then we can rewrite the mathematicdél
(23) into the state space in the general form

Nu(t) + Pu(t) = F(t,u), (26)
where 0 & B 0
N= {E Bgloby F= [ 0 Kglob}. 1)
The initial conditions are
u(0) = [&(0)" z(0)"]". (28)

The general form (26) can be rewritten using a system maémoted asA in a more suitabl
form )

u(t) + Au(t) = F(t,u), (29)
whereA = N~'P andF(t,u) = N~'F(t,u). The system matrix has following structure
the condensed model (23)

| Bgob Kgion

whereF is a unit matrix and moreover it can be derived following tielas
By, = B+wiG+ VT (Bg+ Bg)V,
Kg, =A+ VT (Kg+ Kg)V
and
T

F(t,u) = [VT (Z(Ci,jfi,j(Q) +e @)+ D> e FN(t @) + falt) + fE(ﬂ) o’

ij 2=1

The aim of dynamical analysis is to investigate the behaviduhe system in dependence
chosen system parameters. Contrary of a linear system ttie@mnone can not be investiga:
using direct calculation of amplitudes of steady statequkcal motion. There is a need to
some of the direct-time integration methods to gain the tiesponse of the model (29)
arbitrary excitation. For this purpose, the time integnaiis started from initial state

z(0) = (A+ VT (K + Kg)V)'VTfz(0), 2(0)=0 (31)

to minimize the startup transient motions. In general, ear f(0) can describe an arbitra
external excitation at the start of numerical integration.
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4. Nonlinear vibration of the test-gearbox

The presented methodology was verified using the simplegesstoox (fig. 4). The gearb:
was decomposed into two rotating shafts with gears: (1, 2) and into the housings(= 3).
Shafts were discretized using shaft finite elements andgeare modelled using their discr
parameters (mass and moments of inertia). The models df sliagystems were created i
their modal analyses were performed in MATLAB code. The haygs/as modelled as 3D co
tinuum using FEM in ANSYS system. The necessary housing madiaes (eigenfrequenci
and chosen eigenvectors) were exported from ANSYS to MATLABe condensed model
the whole system was assembled in MATLAB code on the basisegbtesented methodolol
MATLAB system was also used for the computation of the eigéms and dynamic respon
The original nonreduced models of subsystems had togetkedd 000 DOF and the first lev
of the model reduction had 580 DOF{ = m, = 90, m3 = 400). The final number of DO
was still reduced because the direct-time integration otkthsed here for dynamical analy:
is very time demanding. Thus, there is a need to find a suffi©l@F number to decrease co
putational time on one hand and to keep a sufficient resuttisracy on other hand. The sh

o
.
ol B :

Figure 4: Scheme of the test-gearbox

system is included by means of flexible torsional couplimgs a drive system. It is suppos
constant angular speeds of the driving and driven partseobyistem. Static external loadi
was defined by initial static torsional preloadidgy; = Ay, = Ap on both sides of the drin
system (see fig. 4).

The approach to bearings modelling considers twenty gpéilements for each bearing. 1
linearized parts of rolling elements stiffnesses in (1&)clculated from the non-linear syst
of algebraic equations which depend on static torsionalif@pA and are derived in Zemi
and Hagman (2005).

The system vibrations caused by internal kinematic exoitain gearing are investigat:
using the condensed model in dependence on static torgiceiadding and on rotating speec
drive shaft using the direct-time integration method. TiHeainical analysis was performec
dependence on operational revolutiengpm]. Kinematic transmission error in gear coupl
(z = 1) was approximated by Fourier series with three harmonicpmmrmants

_ AT AT,

We are concerned with the qualitative analysis of the test-gearbox vibrations. The

to investigate the influence of gear mesh interruption and contact loss of the rolling-el
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on the behaviour of the whole system. In fig. 5 and 6 the bifurcation diagrams of g
deformation for a chosen revolution range of the system are shown. All results were gai
statical torsional preloadinfdy,o = 0.06 rad. In the diagram a line corresponding to zero gea
deformation is plotted. Each dot plotted under this line corresponds to gear mesh intert
Red dots are maximal values of gearing deformation per one period of motion and the bl
are minimal values, respectively. In the operational area there exist periodical solutio
may bifurcate to other periodical solutions with different number of maxima and with diff
number of impacts per one period of motion, or they may overcome to regions with ¢
motions. These regions of motions and changes among the regions are very interesting
theoretical and practical point of view.
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Figure 5: Bifurcation diagram. Dependence of extremes ofiggaleformation on shaft
revolution for linearized bearing couplings

In fig. 5 and 6 we have a comparison of the influence of nonliceaplings on gear me:
deformation. The first one shows the dependance of geariiogndation on shaft revolutior
supposing the linearized bearing couplings without cdrites of rolling-elements.. The se¢
ond one shows the same quantity but for nonlinear bearinglic@s. The gear mesh behavic
seems to be very similar, but in case of nonlinear bearingtiaetic motion arise in such poin
in which the simple bifurcation was for linearized bearimgiplings.

In fig. 7 — 9 maxima and minima of chosen rolling-elements duédion are plotted. Ac
cording the extreme deformation values we can specify venetie the rolling-element
loaded, or some impact motions among shaft, housing andgetlement arise (transver:
radial direction), or the rolling-element is unloaded, g¥his signified by negative deformati
value (opposite the fully loaded element).

In fig. 10 phase trajectories of gearing deformation forehd#ferent states that are defir
by n = 2300 rpm,n = 2800 rpm andn = 3260 rpm, respectively are plotted. The first si
is characterized by motion with three maxima and minima per period and no gear me
interruption, the second one with two maxima and minima per period and with one ge
mesh interruption per the period of motion and the third enghiaotic with random gear me
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Figure 6: Bifurcation diagram. Dependence of extremes ofiggaleformation on shaft
revolution for nonlinear bearing couplings
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Figure 7. Dependence of extremes of roller-element beal@figrmation on shaft’s revolutic
for 4, ; = 6; (main radial direction)
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Figure 8: Dependence of extremes of roller-element beal&igrmation on shaft’s revolutic
for 6, ; = 9, + m/2 (transversal radial direction)
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Figure 9: Dependence of extremes of roller-element beal&igrmation on shaft’s revolutic
for 6, ; = 6; + = (main radial direction)
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Figure 11: Phase trajectories of rolling-element deforomabf the bearing3; in main radia
direction forn = 2300 rpm,n = 2800 rpm andn = 3260 rpm

interruption. Fig. 11 shows phase trajectories of mainaidoall-element deformation of tl
bearingB; for the three above defined states. It is interesting, tharmpalement deformatiot
have chaotic structure without any respect to the charaftgearing deformation and jourr
centre motion. Further, it is astonishing, the phase trajgof bearing element is enclosec
a rectangle and has rectangular structure.

The character of motion of bearing journal centre corredpdn the motion character
gearing, as fig. 12 displays.
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n = 3260 rpm

5. Conclusion

The paper describes the methodology of the large couplatingtsystems modelling and t
analysis of their nonlinear vibrations. The models of thegetems suppose a flexible ste
and nonlinear gear couplings between rotor subsystemsaniithear rolling-element bearing
To model the couplings between rotor and stator subsysteensdmplex bearing model 1
specting real number of contact forces acting between @sireind stator is used. The wh
system model is created by means of the modal synthesis thethich allows to rapidly re
duce number of degrees of freedom of the mathematical mdded. methodology is applie
to the test-gearbox nonlinear vibrations excited by kingerisansmission error. The syste
response is computed using direct-time integration mettrmtican be further used as a in
for noise radiation analysis, see Hajan and Byrtus (2006).
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