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Summary: Gear drives and gearboxes are parts of many mechanical devices and
simultaneously represent main excitation sources. The aimof this contribution is to
take into account the influence of nonlinear couplings in thegear drives and create
a general mathematical model for an arbitrary gearbox usingthe modal synthesis
method with DOF number reduction. The stress is laid on nonlinear modelling of
gear and bearing couplings and their influence on the dynamical system response
to the internal excitation. The bearing model respects realnumber of rolling bod-
ies and real roller nonlinear contact forces acting between journals and the outer
housing in dependance on their deflection. The nonlinear model of gear meshing
makes possible to respect in consequence of low static load and internal excitation
generated in gear meshing the the gear mesh interruption. Asa result of nonlinear
couplings, vibrations are accompanied by impact motions, bifurcation of solution
and chaotic motions. The presented approach to the nonlinear vibration analysis of
large multibody gear drives is applied to a simple test-gearbox.

1. Introduction

Large rotating systems, especially gear drives and gearboxes occur as parts of many mechanical
devices on one hand. But they are representans of main excitation sources on the other hand.
Their vibration analyses are commonly performed with the assumption of the small deforma-
tions and linearized coupling forces. But this assumption isnot correct for certain operational
states when the influence of coupling nonlinearities is dominant. Therefore the nonlinear mod-
els of gear and bearing couplings are developed and the influence of coupling nonlinearities is
investigated.

In last years the subject of large rotating systems modelling has been studied in our depart-
ment. The result of this effort is a creation of modal synthesis method allowing to model systems
with complicated structures. The advantage of this method is separate modelling of subsystems
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using different modelling tools and separate modelling of discrete couplings. Subsequently the
noise radiation analysis can be performed, as Hajžman and Byrtus (2006) have shown.

A general mathematical model of a large rotating system including the flexible stator is
created and solution of nonlinear dynamical response is shown. Gear kinematic transmission
errors are supposed to be the main source of high-frequency vibrations. A simple test-gearbox
is used for numerical experiments to test the presented modelling methodology.

2. Modelling of large rotating systems

To model large rotating system the modal synthesis method isused. This method is based on
suitable system decomposition into subsystems and on separate modelling of couplings among
subsystems. In our case, the gearbox can be generally decomposed intoS subsystems. The
first S − 1 subsystems which consist of shafts with gears rotating withangular velocityωs are
described with following system of ordinary differential equation in matrix form as Zeman and
Hlaváč (1995) showed

Msq̈s(t) + (Bs + ωsGs)q̇s(t) + Ksqs(t) = fE
s (t) + fG

s + fB
s , s = 1, 2, . . . , S − 1, (1)

whereMs, Bs andKs are symmetrical mass, damping and stiffness matrices of theuncoupled
subsystems of orderns andGs is skew symmetrical matrix of the gyroscopic effects of the
same order. These matrices are usually created by means of finite element method combined
with discrete parameters representing masses of rigid geardiscs. External forced excitation is
described by vectorfE

s (t). VectorfG
s represents the forces in spur helical gear couplings and

vectorfB
s expresses the coupling forces in rolling-element bearings. All force effects described

in vectors above are acting on the subsystems. The mathematical model of the housing is
expressed in a similar way

MSq̈S(t) + BSq̇S(t) + KSqS(t) = fE
S (t) + fB

S . (2)

Mass, damping and stiffness matricesMS, BS, KS of ordernS are created after discretization
by finite element method. VectorfE

S (t) is a possible external excitation and force effect of
bearing couplings is expressed by vectorfB

S .

The bearing model, used in our approach to gearbox modelling, respects real number of
rolling elements uniform distributed between the inner andouter race (see fig. 1). Let us
suppose that the rolling-elementj of the bearingi touches the outer race at the contact point
Hi,j. The forceFi,j trasmitted at this point depends nonlinearly on the rolling-element deflection
∆i,j according the Hertz’s contact theory in this way

Fi,j =

(

∆i,j

C

)n

H(∆i,j), F ax
i,j =

(

∆ax
i,j

C

)n

H(∆ax
i,j). (3)

The designationax belongs to axial deflections of rolling-elements and corresponding axial
forces that moreover arise in the radi-axial rolling bearings. The deflections arise from the
deformation of the of the rolling elements and the races at the contact point. Parametersn and
C depend on rolling-elements geometry, elastic modulus and Poission’s ratio of the bearing
components, as mentioned in Krämer (1993). Heaviside functionH corrects the contact forces
when the deflections are negative which means that the rolling elements are unloaded.
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Figure 1: Scheme of a bearing coupling

-1 -0.5 0 0.5 1 x 10
-3

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Fi,j [N]

∆i,j [m]

Figure 2: The ball-element bearing force characteristic

The calculation of the deflections∆i,j and∆ax
i,j supposing the rigid inner and flexible outer

race, is in detail described in Byrtus and Zeman (2005). Fig. 2shows the dependance of force
transmitted by a rolling element on its deflection.

Then the vectorfB
s in equation (1) (model of rotating parts) can be expressed infollowing

form
fB

s = −
∑

i

∑

j

(t̃i,jFi,j(qs) + t̃ax
i,jF

ax
i,j (qs)), s = 1, . . . , S − 1, (4)

where vectors̃ti,j, t̃ax
i,j describe the bearing geometry. Among bearing indicesi belong only

these which correspond to bearings coupled with the subsystems. Similarly, the vectorfB
S in

equation (2) (model of a stator – housing) can be expressed infollowing form

fB
S =

∑

i

∑

j

(ẽi,jFi,j(qS) + ẽax
i,jF

ax
i,j (qS)), (5)

where vectors̃ei,j, ẽax
i,j describe the geometry of contact points at the stator. Bearing indicesi

are governed by the same conditions as above.
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In the general coordinate space

q(t) = [ qT
1 (t), qT

2 (t), . . . , qT
S (t) ]T ∈ R

n, n =
S
∑

s=1

ns (6)

of the whole system the bearing model is described by the global coupling vector in the form

fB =











fB
1

fB
2
...

fB
S











=
∑

i

∑

j

(ci,jFi,j(q) + cax
i,jF

ax
i,j (q)). (7)

Vectorsci,j andcax
i,j describe global geometrical properties of each bearing contact pointj in

bearingi and have this structure

ci,j =
[

· · · − t̃T
i,j · · · ẽT

i,j · · ·
]T

, cax
i,j =

[

· · · − (t̃ax
i,j)

T
· · · (ẽax

i,j)
T
· · ·
]T

. (8)

To stabilize the numerical simulation of the nonlinear model it is efficient to separate the
linear part of nonlinear bearing force characteristic. Thelinear part is described by stiffness and
damping matrices in the general coordinate space (6) and thebearing force vector (7) can be
then rewritten in following form

fB = −KBq(t)−BBq̇(t) +
∑

i

∑

j

(ci,jfi,j(q) + cax
i,jf

ax
i,j (q)), (9)

whereKB andBB are global stiffness and damping bearing matrices. Their structure depends
on the number of rolling elements and on the nodal points to which are they on the shafts fixed
(for details see Zeman and Hajžman (2005)). The bearing damping matrix is supposed to be
proportional to the stiffness matrix

BB = βBKB (10)

and functionsfi,j have form

fi,j(q) =

[(

∆i,j(q)

C

)n

− ki,j∆i,j(q)

]

H(∆i,j(q))− ki,j∆i,j(q)H(−∆i,j(q)). (11)

In the same way can be expressed the functionfax
i,j (q). The parameterski,j represent linearized

rolling-elements stiffness that is calculated in dependence on an external static torsional loading
of drive and driven shafts as is shown in Byrtus and Zeman (2005).

The force effect of the spur helical gear couplingz in (1) is expressed by vector

fG
s = ±

∑

z

δ̃z,iFz(t, dz, ḋz), (12)

where sign ”-” (minus) corresponds to driving gear and sign ”+” (plus) corresponds to driven
gear. Vectorδ̃z,i = [. . . , δT

z,i, . . . ]
T is thens-dimensional extended vector of geometrical pa-

rameters of the gear that is fixed on the shaft at the nodal point i. The forceFz transmitted by
gearingz can be approximately expressed in the form

Fz(t, dz, ḋz) = kz(t)dz + bzḋz + fz(t, dz), (13)
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where kz(t) is time dependent meshing stiffness and bz is coefficient of viscous damping of
gearing on gear mesh line. Nonlinear function fz(t, dz) of gearing deformation dz corrects the
linear elastic part F

(e)
z of the force Fz in the phases of the mesh gear interruption. According to

F
(e)
z shown in fig. 3, this non-linear function is expressed in form

fz(t, dz) = −kz(t)dzH(−dz) + kz(t)(dz + uz)H(−dz − uz), (14)

where uz is tooth backlash and H is Heaviside function.
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Figure 3: The elastic gearing force characteristic

Gearing deformation

dz(t) = −δT
z,iqi(t) + δz,jqj(t) + ∆z(t), (15)

of gears in mesh fixed on shafts at nodal points i and j expresses the relative motion of theoret-
ical contact point of teeth on the gear mesh line. Vectors qi(t) and qj(t) describe displacements
of nodal points i and j. The function ∆z(t), defining kinematic transmission error of gearing z,
can be expressed by Fourier series

∆z(t) =
K
∑

k=1

(∆C
z,k cos kωzt + ∆S

z,k sin kωzt), (16)

where meshing frequencies ωz = πn
30

pz are functions of operation speed n [rpm] and pz = ωz

ω0

is
the speed ratio in relation of driving shaft of the gearbox.

Analogous to the bearing model, we can express the global gear coupling vector in general
coordinate space (6) in following way

fG =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

fG
1

fG
2
...

fG
S−1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
Z
∑

z=1

czFz(t, q, q̇) + fG(t), (17)

where fG(t) is vector of internal kinematic excitation generated in gear meshing that can be

8)
expressed in form

fG(t) =
Z
∑

z=1

(

kz∆z(t) + bz∆̇z(t)
)

cz. (1
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The global vector of geometrical parameters of the gearingz in general coordinate space (6)
has following structure

cz =
[

· · · − δT
z,i · · · δT

z,j · · · 0
T
]T

. (19)

For the same reason as above, it is efficient to separate up thelinear part of nonlinear gearing
force characteristic. Equation (17) can be then rewritten to this form

fG = −KGq(t)−BGq̇(t) +
Z
∑

z=1

czF
N
z (t, q) + fG(t). (20)

KG andBG are stiffness and damping matrices of gear couplings, whosestructure is in detail
described in Zeman and Hajžman (2005) and the functionFN

z expresses the nonlinear part of
the force transmitted by gearingz, i.e. FN

z (t, q) = fz(t, dz).

It is advantageous to assemble condensed mathematical model of the system with reduced
degrees of freedom (DOF) number, because mainly the housingsubsystem could have too large
DOF number and this can hinder from consecutive performing of various dynamical analyses
and optimization. The modal transformations

qs(t) = mVsxs(t), s = 1, 2, . . . , S, (21)

are introduced for this purpose. MatricesmVs ∈ R
ns,ms are modal submatrices obtained from

modal analysis of the mutually uncoupled, undamped and non-rotating subsystems, whereas
ms (ms ≤ ns) is the number of the chosen master modes of vibration. The new configuration
space of the dimensionm is defined by vector

x(t) = [ xT
1 (t), xT

2 (t), . . . , xT
S (t) ]T , m =

S
∑

s=1

ms. (22)

The models (1) and (2) can be then rewritten using terms (17) and (9) in the global condensed
form

ẍ(t) +
(

B + ω0G + V T (BB + BG) V
)

ẋ(t) +
(

Λ + V T (KB + KG) V
)

x(t) =

= V T
(

∑

i

∑

j

(ci,jfi,j(q) + cax
i,jf

ax
i,j (q)) +

Z
∑

z=1

czF
N
z (t, q) + fG(t) + fE(t)

)

,
(23)

wherefE(t) = [ (fE
1 (t))T , (fE

2 (t))T , . . . , (fE
S (t))T ]T is the global vector of external excita-

tion,

B = diag
(

mV T
s Bs

mVs

)

, G = diag

(

ωs

ω0

mV T
s Gs

mVs

)

, V = diag ( mVs ) (24)

are block diagonal matrices (ωS = 0 holds for the stator subsystem) andΛ = diag ( mΛs ) is
diagonal matrix composed of spectral submatricesmΛs ∈ R

ms,ms of the subsystems.

3. Dynamical Analysis

The mathematical model of gear drives is strongly nonlinear due to the possibility of gear mesh
interruption and in consequence of nonlinear bearing couplings respecting loss of contact in

6 Engineering Mechanics, Svratka 2006, #281



some contact points in dependance on position of journal centre. To perform the dynamical
analysis the condensed mathematical model (23) has to be transformed into the state space to
use the direct-time integration method. The state space is described with vector of state variables
in the form

u(t) = [ ẋT
1 (t), ẋT

2 (t), . . . , ẋT
S (t), xT

1 (t), xT
2 (t), . . . , xT

S (t) ]T , (25)

where the vectorsxs(t) were mentioned above. Then we can rewrite the mathematical model
(23) into the state space in the general form

Nu̇(t) + Pu(t) = F (t,u), (26)

where

N =

[

0 E

E Bglob

]

, P =

[

−E 0

0 Kglob

]

. (27)

The initial conditions are
u(0) = [ẋ(0)T x(0)T ]T . (28)

The general form (26) can be rewritten using a system matrix denoted asA in a more suitable
form

u̇(t) + Au(t) = F̃ (t,u), (29)

whereA = N−1P andF̃ (t,u) = N−1F (t,u). The system matrix has following structure for
the condensed model (23)

A =

[

Bglob Kglob

−E 0

]

, (30)

whereE is a unit matrix and moreover it can be derived following relations

Bglob = B + ω0G + V T (BB + BG) V ,
Kglob = Λ + V T (KB + KG) V

and

F̃ (t,u) =

[

V T

(

∑

ij

(ci,jfi,j(q) + cax
i,jf

ax
i,j (q))+

Z
∑

z=1

czF
N
z (t, q) + fG(t) + fE(t)

)T

0
T





T

.

The aim of dynamical analysis is to investigate the behaviour of the system in dependence on
chosen system parameters. Contrary of a linear system the nonlinear one can not be investigated
using direct calculation of amplitudes of steady state periodical motion. There is a need to use
some of the direct-time integration methods to gain the timeresponse of the model (29) to
arbitrary excitation. For this purpose, the time integration is started from initial state

x(0) = (Λ + V T (KB + KG)V )−1V T fE(0) , ẋ(0) = 0 (31)

to minimize the startup transient motions. In general, the vectorfE(0) can describe an arbitrary
external excitation at the start of numerical integration.

M. Byrtus, V. Zeman 7



4. Nonlinear vibration of the test-gearbox

The presented methodology was verified using the simple test-gearbox (fig. 4). The gearbox
was decomposed into two rotating shafts with gears (s = 1, 2) and into the housing (s = 3).
Shafts were discretized using shaft finite elements and gears were modelled using their discrete
parameters (mass and moments of inertia). The models of shaft subsystems were created and
their modal analyses were performed in MATLAB code. The housing was modelled as 3D con-
tinuum using FEM in ANSYS system. The necessary housing modal values (eigenfrequencies
and chosen eigenvectors) were exported from ANSYS to MATLAB.The condensed model of
the whole system was assembled in MATLAB code on the basis of the presented methodology.
MATLAB system was also used for the computation of the eigenvalues and dynamic response.
The original nonreduced models of subsystems had together over 15 000 DOF and the first level
of the model reduction had 580 DOF (m1 = m2 = 90, m3 = 400). The final number of DOF
was still reduced because the direct-time integration method, used here for dynamical analysis,
is very time demanding. Thus, there is a need to find a sufficient DOF number to decrease com-
putational time on one hand and to keep a sufficient results accuracy on other hand. The shaft

B3

B1 B2

B4

G

ω1t + ∆ϕ1

ω2t−∆ϕ2

Figure 4: Scheme of the test-gearbox

system is included by means of flexible torsional couplings into a drive system. It is supposed
constant angular speeds of the driving and driven parts of the system. Static external loading
was defined by initial static torsional preloading∆ϕ1 = ∆ϕ2 = ∆ϕ on both sides of the drive
system (see fig. 4).

The approach to bearings modelling considers twenty rolling-elements for each bearing. The
linearized parts of rolling elements stiffnesses in (11) are calculated from the non-linear system
of algebraic equations which depend on static torsional loading ∆ϕ and are derived in Zeman
and Haǰzman (2005).

The system vibrations caused by internal kinematic excitation in gearing are investigated
using the condensed model in dependence on static torsionalpreloading and on rotating speed of
drive shaft using the direct-time integration method. The dynamical analysis was performed in
dependence on operational revolutionsn [rpm]. Kinematic transmission error in gear coupling
(z = 1) was approximated by Fourier series with three harmonic components

∆S
1,1 = 5 · 10−6 m , ∆S

1,2 =
∆S

1,1

2
, ∆S

1,3 =
∆S

1,1

3
, ∆C

1,1 = ∆C
1,2 = ∆C

1,3 = 0 .

We are concerned with the qualitative analysis of the test-gearbox vibrations. The aim is
to investigate the influence of gear mesh interruption and contact loss of the rolling-elements
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on the behaviour of the whole system. In fig. 5 and 6 the bifurcation diagrams of gearing
deformation for a chosen revolution range of the system are shown. All results were gained for
statical torsional preloading∆ϕ = 0.06 rad. In the diagram a line corresponding to zero gearing
deformation is plotted. Each dot plotted under this line corresponds to gear mesh interruption.
Red dots are maximal values of gearing deformation per one period of motion and the blue ones
are minimal values, respectively. In the operational area there exist periodical solutions that
may bifurcate to other periodical solutions with different number of maxima and with different
number of impacts per one period of motion, or they may overcome to regions with chaotic
motions. These regions of motions and changes among the regions are very interesting from the
theoretical and practical point of view.
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Figure 5: Bifurcation diagram. Dependence of extremes of gearing deformation on shaft’s
revolution for linearized bearing couplings

In fig. 5 and 6 we have a comparison of the influence of nonlinearcouplings on gear mesh
deformation. The first one shows the dependance of gearing deformation on shaft revolutions
supposing the linearized bearing couplings without contact loss of rolling-elements.. The sec-
ond one shows the same quantity but for nonlinear bearing couplings. The gear mesh behaviour
seems to be very similar, but in case of nonlinear bearing thechaotic motion arise in such points,
in which the simple bifurcation was for linearized bearing couplings.

In fig. 7 – 9 maxima and minima of chosen rolling-elements deformation are plotted. Ac-
cording the extreme deformation values we can specify whether the the rolling-element is
loaded, or some impact motions among shaft, housing and rolling-element arise (transversal
radial direction), or the rolling-element is unloaded, which is signified by negative deformation
value (opposite the fully loaded element).

In fig. 10 phase trajectories of gearing deformation for three different states that are defined
by n = 2300 rpm, n = 2800 rpm andn = 3260 rpm, respectively are plotted. The first state
is characterized by motion with three maxima and minima per one period and no gear mesh
interruption, the second one with two maxima and minima per one period and with one gear
mesh interruption per the period of motion and the third one is chaotic with random gear mesh
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Figure 6: Bifurcation diagram. Dependence of extremes of gearing deformation on shaft’s
revolution for nonlinear bearing couplings
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Figure 7: Dependence of extremes of roller-element bearingdeformation on shaft’s revolution
for δ1,j = δ1 (main radial direction)
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Figure 8: Dependence of extremes of roller-element bearingdeformation on shaft’s revolution
for δ1,j = δ1 + π/2 (transversal radial direction)
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Figure 9: Dependence of extremes of roller-element bearingdeformation on shaft’s revolution
for δ1,j = δ1 + π (main radial direction)
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Figure 10: Phase trajectories of gearing deformation forn = 2300 rpm, n = 2800 rpm and
n = 3260 rpm
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Figure 11: Phase trajectories of rolling-element deformation of the bearingB1 in main radial
direction forn = 2300 rpm,n = 2800 rpm andn = 3260 rpm

interruption. Fig. 11 shows phase trajectories of main radial ball-element deformation of the
bearingB1 for the three above defined states. It is interesting, the bearing element deformations
have chaotic structure without any respect to the characterof gearing deformation and journal
centre motion. Further, it is astonishing, the phase trajectory of bearing element is enclosed in
a rectangle and has rectangular structure.

The character of motion of bearing journal centre corresponds to the motion character of
gearing, as fig. 12 displays.
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Figure 12: Orbits of journal centre of the bearingB1 for n = 2300 rpm, n = 2800 rpm and
n = 3260 rpm

5. Conclusion

The paper describes the methodology of the large coupled rotating systems modelling and the
analysis of their nonlinear vibrations. The models of thesesystems suppose a flexible stator
and nonlinear gear couplings between rotor subsystems and nonlinear rolling-element bearings.
To model the couplings between rotor and stator subsystems the complex bearing model re-
specting real number of contact forces acting between journals and stator is used. The whole
system model is created by means of the modal synthesis method which allows to rapidly re-
duce number of degrees of freedom of the mathematical model.The methodology is applied
to the test-gearbox nonlinear vibrations excited by kinematic transmission error. The system
response is computed using direct-time integration methodand can be further used as a input
for noise radiation analysis, see Hajžman and Byrtus (2006).
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Zeman, V. & Haǰzman, M. (2005) Modelling of shaft system vibration with gears and rolling-
element bearings.Proceedings, Colloquium Dynamics of Machines 2005.
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