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Summary:  The simulation of the fluid flow through elastic pipes has a great 
application in a blood flow through human vessels – investigation of such 
phenomena as an atheriosclerosis generation in artery walls, the Korotkoff's 
sounds generation or modeling of vascular mechanical substitutes (the so called 
"stents") and is therefore widely studied. In this text we model the flow through 
collapsible pipes by the time-dependent, spatially one-dimensional model 
consisting of the balances of mass, momentum, and the coresponding material 
law. The experimental research of the problem is our aim as well – we introduce 
the new experimental set-up for testing the flow throw collapsible tube samples, 
which has been currently finished at ČVUT Praha. 

1. MODELED SYSTEM 
The system we study is the Starling resistor (see Fig. 1). The main part consists of the thin-

walled elastic tube of length  and the thickness , where we assume h . The elastic tube 
is surrounded by two rigid channels. The upstream rigid channel has the length  and the 
downstream channel has the length . The cross-sectional area of the tube is denoted by 

 while the cross-sectional area of the rigid parts is denoted by . The fluid flows 
from the reservoir with the constant pressure 
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Sp . The downstream rigid part ends with the 
restrictor connecting the system with zero pressure outside of the system. The flexible part of 
the tube is located within the box with the constant pressure ep . 

2. MATHEMATICAL FORMULATION 
The model consists of three equations – the balance laws of mass, momentum, and the 

corresponding material relation. The equation of balance mass for an incompressible fluid 
with density ρ  in an elastic tube of the cross-section ( ),A A x t=   is 
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Fig. 1 The Starling Resistor 
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where  is the fluid velocity. The balance of momentum has the form ( ,v v x t= )
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where ( , )p p x t=  is the fluid pressure, 0S D0π=  is the peripheral length of the internal 
surface. The effect of the expected flow separation is replaced  by the simple viscous friction 
along the tube. The friction coefficient fλ  is expressed differently for the laminar flow 
( ) (derived using the assumption of the Poiseuille flow) and differently for the 
turbulent flow ( ) (using an empirical formula see [2]) as follows 
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The local Reynolds number is taken in the form 
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where ν  is the kinematic viscosity of the fluid. The viscoelastic properties of the elastic tube 
wall are taken in the form 
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where γ  is the tube damping and T  is the tube tension and ep p−  is the so-called transmural 
pressure. The material law (2.5) was proposed by Hayashi S. et al., 1998 ([1]).  

 

 



 

The elastic part of the constitutive relation (2.5) is described by the function  ([1]) ( )zΦ
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where PK  and  are stiffnesses of the flexible tube for collapsed and inflated state 
respectively. The second additional term in the equation (2.5) is the tensile force taking the 
curvature of the tube wall into account.  
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The material law (2.5) can be derived using the standard Hooke law. Starting with the 
description of an elastic body  
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where  is the stress tensor and u  is the displacement vector, transforming equation (2.7) to 
cylindrical coordinates and using the assumption for the displacement 

 we derive the material law of the form 
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The damping term in the material law (2.5) is replaced by the inertial term on the right hand 
side of equation (2.8). Using the assumption of small deformations  
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The advantage of the equation (2.9) comparing to equation (2.5) is that it contains only 
standard elastic constants.  

The flow in upstream and downstream rigid parts is modeled by following two ordinary 
differential equations  
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where 
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and R  is the resistance of the restrictor. The pressure outside of the tube is zero. 

 
 

 

 



 

3. NUMERICAL RESULTS 
The system (2.1)-(2.6) and (2.11) was studied numerically using four different methods. All 

of the methods give plausibly coincident results (see Fig. 2).  

The system exhibits numerically three different qualitative behaviours: the collapse of the 
elastic tube, the damping, and the self-excited oscillations (Fig. 2).  The main question was 
focused on the dependence of the frequency of the self-excited oscillations on the material 
parameters , see Fig 3. The three stages of behaviour: collapse, damping and self-
excited oscillations are labeled by letters C, D and frequency, if the oscillations are periodic 
and the frequency is well determined, otherwise labeled by letter X. The region of damping at 
the bottom of the picture is expected due to the high stiffness of the tube. 
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The region of collapse at the top of the picture, i.e. when  comes to  is caused by the 
low stiffness of the tube, but it is necessary to mention that all numerical methods have 
difficulties converging if the cross-section  comes to value near . Therefore it is not clear 
if cross-section  as part of the real solution of the original system of equations (2.1)-(2.6) 
and (2.10) converges to 0  as well or if there still exist self-excited oscillations.  
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Surprisingly there is another damping region in the middle of the picture dividing the area of 
self-excited oscillations into two halves, which we denote by I  (an upper one) and II  (a 
lower one). The real tube which was meassured by Hayashi S., et al. lies in region I  
( , see [1]). We note that the solutions in the region 105 Pa,   500 Pa mPK T= = I  are 
generally more irregular comparing to the solutions in the region II . If we look at the 
dependence of the frequency of self-excited oscillations on parameters PK  and T  we see that 
the frequency decreases with an increase of parameters PK  and T (an increase of the Young 
modulus ) in region E II . In region I  such dependence does not hold, which is possibly due 

to dominance of the nonlinear term 
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 in this region. 

 

 
Fig. 2 Convergence of the methods for 800T =  Pa m, 105PK =  Pa at  m  (dot - 

the Crank-Nicholson method, dash - the Runge-Kutta method, solid - the BDF method, 
thick solid - the Euler method). We note that the BDF and the Euler methods coincide. 
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Fig. 3 Qualitative behaviour of the model for different values of parameters T  and PK  for 
(C - collapse of the tube, D - damping of the tube, value - the 

frequency of the self-excited oscillations [Hz], X - aperiodic self-excited oscillations). 
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The system of equations (2.1)-(2.4), (2.6) and (2.10) with material law (2.9) instead of  
material law (2.5) was studied numerically as well.  Only the damping state of behaviour were 
observed – the system fails to exhibit  the self-excited oscillations. 

 

 

 

4. EXPERIMENTAL SET-UP 
 

The experimental research of the problem is also our aim. The new experimental set-up for 
testing the flow throw collapsible tube samples has been currently finished at ČVUT Praha. 
The diagram of the experimental setup is on Fig 4. The set-up is equiped by two elements 
homogenizing the flow located at the begining and at the end of the collapsible tube sample. 
The detail of the box surrounding the collapsible tube sample is depicted on Fig. 5. 

 



 

 
 

Fig. 4 The diagram of the experimental set-up. The box surrounding the collapsible tube is 
surrounded by two elements homogenizing the flow. 

 

 
 

Fig. 5 The box surrounding the collapsible tube sample in detail. 



 

5. ACKNOWLEDGEMENTS 

This research was supported by the following project: PP05-281, Interakce kapaliny s 
pevnou a pohyblivou stěnou v oblasti biomechaniky, Institute of Thermomechanics 
CAS.  
 

6. REFERENCES 
[1]  Hayashi S., Hayase T., Kawamura H.: Numerical Analysis for Stability and Self-Exited 

Oscillation in Collapsible Tube Flow, J. of Biomech. Eng. Vol. 120, (1998) 468-475. 

[2] Colebrook C.F.: Turbulent Flow in Pipes with Particular Reference to the
 Transition Region Between the Smooth and Rough Pipe Law, J. Institute Civil Eng., 
(1939). 

 


	MODELED SYSTEM
	MATHEMATICAL FORMULATION
	Fig. 1 The Starling Resistor

	NUMERICAL RESULTS
	Fig. 3 Qualitative behaviour of the model for different valu

	EXPERIMENTAL SET-UP
	The experimental research of the problem is also our aim. Th

	ACKNOWLEDGEMENTS
	This research was supported by the following project: PP05-2
	REFERENCES

