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Summary:  Localization of the robot is a task of estimating robot position in 
known environment from sensor observation. The paper describes basic principles 
of Markov localization technique, succesfully used for localization task. Method is 
robust against sensor errors and can deal with global uncertainty when robot 
position is completely unknown. Both simulation and experimental verification of 
method usability are included. 

 

1. Introduction 
The problem of robot localization is usually defined as estimating robot position within 
known environment (a model of environment must be given in some form, e.g. topological 
map, grid based description of obstacles, etc.) based on observations, usually odometric 
readings, proximity sensors, cameras, etc. There is a number of algorithms to deal with this 
problem, most of them falls into local localization category, when initial location of a robot is 
known and the algorithm compensates odometric readings errors based on sensor observation. 
A new localization algorithm called Markov localization which based on probabilistic 
approach was proposed recently (Fox et. all, 1999; Bougard et. al, 1998). This algorithm is 
capable of dealing with global uncertainty when robot location is completely unknown. 

 

 

2. Markov localization basics 
The key idea of Markov localization is to calculate the probability of “being there” for all 
possible locations in environment. Such belief of being at certain position l  in certain time is 
denoted as . Position  is robot position in ( lLBel T = ) l , ,x y α  space, where ,x y  are cartesian 
coordinates of the robot and α  is it’s orientation. When initial position of the robot is 
unknown, ( )0Bel L  is uniformly distributed. Probability distribution is updated whenever 
robot obtains data from sensors, which in general can be divided into two groups: odometry 
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readings (robot moves), environment sensors (usually proximity sensor of some kind – 
infrared, ultrasonic, laser). 

 

When robot moves and odometry reading is obtained, the belief is updated as 

( ) ( ) ( 1|T a T
l

)Bel L l p l l Bel L l−
′

′ ′= = =∑ , where ( )|ap l l′  is the probability that robot is moved 

from location l  to new location l  with the action a . One can assume that in translation and 
rotation the errors are normally distributed and therefore two independent zero-centered 
gaussian distributions can be used to model the movement, when variances of distributions 
are proportionally dependent on the length of measured movement. 
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When an environment sensor reading  is obtained, the belief is updated as Ts

( ) ( ) ( 1|T T T T )Bel L l p s l Bel L lα −= = = , where ( )|Tp s l  is probability of sensing  at l  (it 
specifies the probability of observations in different locations of environment) and 

Ts

Tα  is 
normalizer that keeps sum of ( )Bel l  for all l  equal to 1. 

 

Furthermore the representation of robot’s belief ( )Bel l  and conditional probability ( )|Tp s l  
computation must be determined. 

 

There are various ways how robot belief can be represented, e.g. Kalman filtering based 
approach (see e.g. Smith, 1990), topological approach (see e.g. Kaelbling, 1996), etc.  Those 
techniques are unfortunately limited in some ways (Kalman filters require to know the 
starting location of the robot, topological approach gives only rough sense of location). To 
overcome those limitations, Bougard et al. (1998) suggests using fine-grained, regularly 
spaced grid, with spatial and angular resolutions depending on sensors types used and also on 
state space size, typically the spatial resolution is between 15-30 cm, angular resolution 
between 2-5 degrees. 

 

Only proximity sensors are used as environment sensors furthermore.  As a perception model 
of such sensor Fox et al. (1999) developed a sensor model calculating ( |T )p s l  based only on 
the distance  to the closest obstacle in the map along the direction of the sensor: lo
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= , where standard deviation σ  of the distribution depends accuracy 

of the world model and accuracy of the sensor. 

 

Figure 1. gives example of such distribution for infra-red sensor. The distance to the closest 
obstacle is 270 mm. The figure also shows measured probabilities of measurements obtained 
with infrared sensor Sharp GP2D12. 



 

 

 
 

Figure 1. Proximity sensor perception model vs. measured values (Sharp GP2D12 IR sensor) 

 

3. Implementation issues 

When using fine grids as state space representation, it is obvious that the memory and mainly 
computation requirements can grow substantially. For example environment of  
with angular grid resolution of  and a cell size of 10

210 10m×
2 10cm×  brings state space consisting of 

1 800 000 states. Such matrices can not be updated in real time given current computer speed 
(updates are required for each sensory input and step movement of a robot). Therefore some 
techniques are required to speed up the updates for the method to be usable in real world 
applications. 

 

First useful technique is pre-computation of sensor model. Perception model ( )|Tp s l  
depends only on distance  to the closest obstacle in the map along the direction of the 
sensor. Therefore it is possible to pre-compute and store those distances for all possible robot 
locations. 

lo

 

Second technique is using a selective update. During update density quickly concentrates on 
the grid cell which represents the real location of the robot (and possibly its closest 
neighbors). Therefore it is reasonable to approximate ( )|Tp s l  for those cells, whose belief is 
below certain threshold by averaging over all possible locations of the robot 
( ) ( ) ( )|t t

l
p s p s l p=∑ l . 



 

4. Simulation tests 
Markov localization as described above was implemented using Borland Delphi 7 and first 
tested on simulated data. Test world was described with 20 cm resolution on 50  grid and 
angular resolution of 5  (thus forming 180 000 states). Sensor readings were weighted with 
20% noise. Simple filter for IR-sensor data was applied (in computer simulation the filter only 
erased some of the “readings” making the Markov localization job more difficult). An 
example of the belief distribution development for map with three obstacles is shown on 
Figure 2. Belief distribution is projected to 2D (darker the color higher the accumulated belief 
over all orientations) with sensor readings and robot trajectory included. All frames are 
independently normalized. 
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First picture nicely illustrates the principle of Markov localization – only a single reading is 
obtained (second obstacle is behind the first one, third obstacle reading was eliminated by the 
filter), therefore algorithm adds “circles” of measured distance radius centered around 
obstacles. Second frame shows updated belief after a movement reading is obtained. All the 
frames come in sequence: (environment reading, translation, environment reading, rotation). 
One can see that after a few updates a standalone peek is created, corresponding to the real 
position of the robot. 

 

 

5. Simple real robot tests 

Computer simulation results encouraged further testing on real robot. A simple robot was 
built as a testing platform, equipped with motors, sensors and basic electronics. Table 1. 
shows robot basic technical parameters. This simple robot is described in detail in Věchet, 
Krejsa, 2005. 

 

Table 1. Test robot parameters. 

Parametr Value 

Engine type Two stepper motors TEAC 

Sensor equipment Two GP2D12 sensors 

Maximal speed 10cm/s 

Onboard electronics based on ATMEGA8 

Power supply 15V,0.3mA 

 

Test results shown in Figure 3 were obtained with Markov localization state space grid of the 
same resolution as used for simulations. Belief distributions are again projected to 2D, 
snapshots sequence is also the same as in Figure 2. 

 

 



 

 

 

 

 

 

 

 

Figure 2. Development of belief distribution during localization – simulation 



 

 

 

 

 

 

 

 

Figure 3. Development of belief distribution during localization – real robot 

 



 

6. Conclusions 
Markov localization is a robust technique which is capable of correct estimation of robot 
position even under global uncertainty (robot position is completely unknown). The key idea 
of the method is to calculate the probability distribution over all possible locations in state 
space. The distribution is updated whenever robot receives sensor inputs – odometry readings 
or environment sensor readings. 

 

Markov localization is capable of dealing with sensor noise up to high levels, therefore cheap 
infrared or ultrasound sensor can be used and it is also robust to approximate models of the 
environment – occupancy grid maps can be succesfully used. 

 

The method is computationally greedy and requires special techniques to reduce 
computational requirements, however those increase memory requirements. Computational 
requirements are connected to the method only limitation which is the state space size. 
However for indoor applications of reasonable magnitude is the cost of algorithm reasonable. 

 

 

7. Acknowledgement 

This work was supported by Czech Ministry of Education under project MSM 0021630518 
"Simulation modelling of mechatronics systems". 

 

 

8. References 
Fox D., Burgard W., Thrun S.: Markov Localization for Mobile Robots in Dynamic 
Environments, Journal of Artificial Intelligence Research 11, pp.391-427, 1999 

Smith R., Self M., Cheeseman P.: Estimating Uncertain Spatial Relationships in Robotics, in 
I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, Springer Verlag, 1990 

Kaelbling L., Cassandra A. Kurien J.: Acting Under Uncertainty: Discrete Bayesian Models 
for Mobile-robot Navigation, in Proc. of the IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), 1996 

Bougard W., Derr A., Fox D., Cremers A.: Integrating Global Position Estimation and 
Position Tracking for Mobile Robots: the Dynamic Markov Localization Approach, in Proc. 
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1998 

Věchet S., Krejsa J.: How to build a robot with no money, merkur, lego and old stepper 
motors. in Proc. of Engineering Mechanics 2005, Svratka 

 

 

 


