


transmitted to the housing. Contrary on the previous papers, e.g. (Zeman et al., 2004), this
contribution is goaled rather on the vibration and acoustic analysis of the housing than on the
shafts vibration and analysis of the coupling forces and deformations in gearings. The new
original approach to the modelling of bearing couplings (Zeman & Hajžman, 2005) is used for
the connection of the rotor and stator parts. The second part of the contribution describes and
documents some numerical experiments with the simple test-gearbox.

2. Linearized mathematical model of a gearbox

The gearbox can be generally decomposed into S subsystems divided into shafts with gears
(subsystems s = 1, 2, . . . , S − 1) rotating with angular velocity ωs and a housing (subsystem
s = S). Let the vibrations are small about the static equilibrium position.

The mathematical model of the shaft subsystem s can be written (Hajžman, 2004) in matrix
form

Msq̈s(t) + (Bs + ωsGs)q̇s(t) + Ksqs(t) = fE
s (t) + fG

s + fB
s , s = 1, 2, . . . , S − 1, (1)

where Ms, Bs and Ks are symmetrical mass, damping and stiffness matrices of the uncoupled
subsystems of order ns and Gs is skew symmetrical matrix of the gyroscopic effects of the
same order. These matrices are usually created by means of finite element method combined
with discrete parameters representing masses of rigid gear discs. External forced excitation is
desribed by vector fE

s (t). Vector fG
s represents the forces in spur helical gear couplings and

vector fB
s expresses the coupling forces in rolling-element bearings. Both vectors are acting on

the subsystem s.

Similarly the mathematical model of the flexible stator (subsystem S) has the form

MSq̈S(t) + BSq̇S(t) + KSqS(t) = fE
S (t) + fB

S . (2)

Mass, damping and stiffness matrices MS , BS , KS of order nS are generated after discretiza-
tion by finite element method. Vector fE

S (t) is possible external excitation and force effect of
bearing couplings is expressed by vector fB

S .

If we assume the constant gear mesh and relatively small vibrations, the global gear coupling
vector, in the general coordinate space

q(t) = [ qT
1 (t), qT

2 (t), . . . , qT
S (t) ]T , (3)

can be written as

fG =




fG
1

fG
2
...

fG
S−1

0




= −KGq(t) − BGq̇(t) + fG(t). (4)



It holds

KG =
∑

z

kzCz, BG =
∑

z

bzCz, Cz =




...
...

· · · δz,iδ
T
z,i · · · −δz,iδ

T
z,j · · ·

...
... 0

· · · −δz,jδ
T
z,i · · · δz,jδ

T
z,j · · ·

...
...

0 0




,

for the stiffness and damping matrices of the gear couplings. Vectors δz,i and δz,j of dimension
6 are created using geometrical parameters of the gears fixed in nodal point i of the drive shaft
and in nodal point j of the driven shaft. More details can be found e.g. in (Hajžman, 2004).
Quantities kz and bz are stiffness and damping coeficients of the gear coupling z. Vector of
internal kinematic excitation generated in gear meshings is

fG(t) =
∑

z

(
kz∆z(t) + bz∆̇z(t)

) [
· · · − δT

z,i · · · δT
z,j · · · 0

T
]T

, (5)

where ∆z(t) are kinematic transmission errors.

The linearized form of the bearing couplings force vector is

fB =




fB
1

fB
2
...

fB
S


 = −KBq(t) − BBq̇(t). (6)

We assume that small vibrations around the static equilibrium position occur and that linerized
bearing stiffnesses for given static loading are used, similarly as in the case of the gear coup-
lings. Additionally internal excitation in bearings is neglected. The global bearing stiffness
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Fig. 1 Scheme of a bearing.



matrix is then given (Zeman & Hajžman, 2005) by

KB =
∑

i

∑

j




...
...

· · · (ki,jti,jt
T
i,j + kax

i,jti,j axt
T
i,j ax) · · · −(ki,jti,je

T
i,j + kax

i,jti,j axe
T
i,j ax) · · ·

...
...

· · · −(ki,jei,jt
T
i,j + kax

i,jei,j axt
T
i,j ax) · · · (ki,jei,je

T
i,j + kax

i,jei,j axe
T
i,j ax) · · ·

...
...




,

This bearing model represents real number of rolling elements (index j) in a bearing (index i)
and respects real number of contact forces acting between the journals and the outer housing.
Linearized radial ki,j and axial kax

i,j stiffnesses are computed for each contact point Hi,j (see
Fig. 1). Vectors ti,j and ei,j, respectively ti,j ax and ei,j ax, are made using the geometrical
parameters of radial, respectively axial, contact points. The nonzero elements are placed in
matrix KB according to the position of the shaft journal general coordinates and to the position
of the housing contact points general coordinates in the global vector q(t) (3). The global
damping bearing matrix is consider as proportional to the stiffness matrix

BB = βBKB.

It is advantageous to assemble condensed mathematical model of the system with reduced
degrees of freedom (DOF) number, because mainly the housing subsystem could have large
DOF number and this can hinder from consecutive performing of various dynamical analysis
and optimization. The modal transformations

qs(t) = mVsxs(t), s = 1, 2, . . . , S, (7)

are introduced for this purpose. Matrices mVs ∈ R
ns,ms are modal submatrices obtained from

modal analysis of the mutually uncoupled, undamped and non-rotating subsystems, whereas
ms (ms ≤ ns) is the number of the chosen master modes of vibration. The new configuration
space of the dimension m is defined by vector

x(t) = [ xT
1 (t), xT

2 (t), . . . , xT
S (t) ]T , m =

S∑

s=1

ms. (8)

The models (1) and (2) can be then rewritten in the global condensed form

ẍ(t) +
(
B + ω0G + V T (BB + BG) V

)
ẋ(t) +

+
(
Λ + V T (KB + KG)V

)
x(t) = V T

(
fE(t) + fG(t)

)
,

(9)

where fE(t) = [ (fE
1 (t))T , (fE

2 (t))T , . . . , (fE
S (t))T ]T is the global vector of external excita-

tion,

B = diag
(

mV T
s Bs

mVs

)
, G = diag

(
ωs

ω0

mV T
s Gs

mVs

)
, V = diag ( mVs )

are block diagonal matrices (ωS = 0 holds for the stator subsystem) and Λ = diag ( mΛs ) is
diagonal matrix composed from spectral submatrices mΛs ∈ R

ms,ms of the subsystems.



3. Modal analysis and steady state dynamic response of a gearbox

The basic and one of the most important analysis is modal analysis of the conservative un-
damped condensed model (see equation (9))

ẍ(t) +
(
Λ + V T (KB + KG)V

)
x(t) = 0. (10)

This leads to the eigenvalue problem in the form
(
Λ + V T (KB + KG) V − Ω2

νE
)
xν = 0, ν = 1, 2, . . . , m, (11)

where E is a square indentity matrix of order m, xν are eigenvectors in the new configuration
space (8) and real positive Ων [rad/s] are eigenfrequencies. Eigenvectors qν in the original
configuration space (3) can be obtained using the modal transformations (7). As the basic
analysis it can be sufficient to compare the uncoupled subsystems eigenmodes v

(s)
ν and the

eigenmodes q
(s)
ν of the subsystems considered as a part of the whole system.

The main aim of this paper is to study the radiated noise by the housing, that is the effect
of the steady state vibrations excited by internal excitation in gear couplings. The kinematic
transmission error in the form of Fourier series

∆z(t) =
K∑

k=1

(
∆C

z,k cos kωzt + ∆S
z,k sin kωzt

)
(12)

can be rewritten in the complex form

∆̃z(t) =
K∑

k=1

∆z,k eikωzt , ∆z,k = ∆C
z,k − i∆S

z,k , (13)

whereas meshing frequencies ωz = πn
30

pz are functions of operation speed n [rpm] and ratio
pz = ωz

ω0

. Error amplitudes ∆C
z,k and ∆S

z,k are real coefficients of Fourier series. The steady
dynamic response of the whole condensed model (9) has the form

x̃(t) =

Z∑

z=1

K∑

k=1

xz,ke
ikωzt , (14)

with complex amplitudes xz,k

xz,k(n) = Z−1
z,k(n)fz,k(n) , (15)

where

Zz,k =−k2ω2
zE + ikωz

(
D + ω0G + V T (BB + BG)V

)
+ Λ + V T (KB + KG)V (16)

is the dynamical compliance matrix and

fz,k = V T cz(kz + ikωzbz)∆z,k . (17)



The complex amplitudes qz,k of the steady state dynamic response in original generalized
coordinate space can be obtained by transformation (7) qz,k = V xz,k. After differentiation of
expression (14) the complex amplitudes of generalized velocities can be expressed as

ẋz,k = ikpz

πn

30
xz,k, q̇z,k = V ẋz,k. (18)

These quantities are sufficient for the analysis of radiated as will be shown in the next paragraph.
It is convenient to introduce the upper effective estimates of the complex amplitudes

̂̇q(n) =

√∑

z

∑

k

|q̇z,k|
2 (19)

to describe the level of the overall polyharmonic dynamic response.

4. Noise radiated by a gearbox housing

Computations and measurements of acoustical quantities belongs to standalone branches of
science. Comprehensive noise and sound analysis requires knowledge of acoustic sources for
particular cases and solving general wave equation that describes sound dispersion. The used
quantities in acoustics are mainly acoustic pressure and velocity, acoustic energy, power and
intensity. From the viewpoint of the gearbox noise radiated to the environment the most in-
teresting are quantities, that can be easily measured and compared with computed ones. The
acoustic pressure is the most suitable quantity for the measurement and it is also possible to
measure acoustic intesity (Smetana et al., 1994). If the effective values of pressure pef(ri) have
been measured in the enough points ri of the space around the object (the noise source), it
would be possible to express acoustic power of the source by relation

P =

∫

Ω

p2
ef

ρc
dΩ ≈

1

ρc

∑

i

p2
ef(ri)Ωi. (20)

Air density is denoted as ρ, c is the sound velocity in air and Ωi is the basic surface belongs to
the point ri.

For the purpose of the gearbox radiated sound computation the simplest way is to compute
effective normal velocities ve of the gearbox housing surface. According (Nový, 1995) the
radiated acoustic power density [W/m2] can be then written as

we = v2
eρcs, (21)

where s is the sound efficiency. The sound efficiency is the most problematic factor and we
couldn’t determine its value by a simple computation. It depends especially on some critical
frequency and characteritic dimensions of the sound source. Therefore in the next parts the
sound efficiency s is considered to be equal to 1. Overall acoustic power can be computed
using

P =
∑

e

weSe, (22)

after expressing of the acoustic power densities we for all surface elements with area Se.



5. Numerical experiments with the test-gearbox

The presented methodology was verified using the simple test-gearbox (Fig. 2). The gearbox
was decomposed into two rotating shafts with gears (s = 1, 2) and into the housing (s = 3).
Shafts were discretized using shaft finite elements (Hajžman, 2004) and gears were modelled
using their discrete parameters (mass and moments of inertia). The shaft subsystem models
were created and their modal analyses were performed in MATLAB code. The housing was
modelled as 3D continuum using FEM in ANSYS system. The necessary housing modal values
(eigenfrequencies and chosen eigenvectors) were exported from ANSYS to MATLAB. The
condensed model of the whole system was assembled in MATLAB code on the basis of the
presented methodology. MATLAB system was also used for the computation of the eigenvalues
and steady state dynamic response. The original nonreduced models of subsystems had together
over 15 000 DOF and the reduced model of the system had 580 DOF (m1 = m2 = 90, m3 =
400). The shaft system is included by means of flexible torsional couplings into a drive system.
It is supposed constant angular speeds of the driving and driven parts of the system.

B3

B1 B2

B4

G

PSfrag replacements
ω1t + ∆ϕ1

ω2t − ∆ϕ2

Fig. 2 Scheme of the test-gearbox.

Tab. 1 shows chosen eigenfrequencies fν [Hz] of the interior shaft system fixed to a rigid
frame, eigenfrequencies of the housing (stator subsystem) and eigenfrequencies of the whole
gearbox. It can be noted, that the housing is relatively compliant and due to this fact the first
eigenfrequencies of the whole gearbox are relatively low.

The radiated sound power by the housing surface to the environment was computed also in
MATLAB code. Exported finite element mesh datas (i.e. elements table and nodal coordinates)
from ANSYS were processed and the outer faces of elements were found. Densities (21) of

Tab. 1 Chosen eigenfrequencies fν [Hz] of various models.

ν Shaft system to rigid frame Housing Whole gearbox

1 104 335 104
2 395 463 193
3 426 482 310
4 429 518 382
5 455 583 402
6 456 671 454
7 463 741 455
8 1689 819 462
9 1737 861 483

10 1821 996 515
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Fig. 3 Overall gearbox acoustic power in dependence of the operation speed.

the acoustic power were computed for each element face using normal velocities of the housing
nodes. The overall acoustic power P (22) were calculated in dependence of operation speed
n [rpm]. Kinematic transmission error in gear coupling (z = 1) was approached by Fourier
series with three harmonic components

∆S
1,1 = 5 · 10−6 m , ∆S

1,2 =
∆S

1,1

2
, ∆S

1,3 =
∆S

1,1

3
, ∆C

1,1 = ∆C
1,2 = ∆C

1,3 = 0 .

The acoustic power as a function of the operation speed for upper efective estimates of the
velocities and its particular harmonic components is illustrated in Fig. 3. The distributions of
the acoustic power density for chosen resonant state n = 2350 rpm and for upper efective
estimates and chosen harmonic components of velocities are shown in Fig. 4 to Fig. 6.

6. Conclusion

The modelling methodology of the large rotating systems considering flexible stator is pre-
sented. The new bearing model based on the respecting real number of rolling elements and
roller contact forces acting between the journals and the outer housing is used for coupling the
shafts and the housing subsystems. The radiated sound analysis method is proposed on the basis
of the effective normal velocities and consequently the acoustic power densities computation.
The overall acoustic power radiated by the gearbox surface in dependence of the operation speed
can be plotted. This quantity is suitable for objective function formulation from the viewpoint
of the minimal radiated sound.

7. Acknowledgement

This work was supported by the research project MSM4977751303 of the Ministry of Educa-
tion, Youth and Sports of the Czech Republic.



8. References
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339-340, full paper on CD-ROM (in Czech).

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 4 Acoustic power density [W/m2] radiated by test-gearbox for chosen resonant state
n = 2350 rpm calculated by means of velocity upper efective estimates.
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Fig. 5 Acoustic power density [W/m2] radiated by test-gearbox for chosen resonant state
n = 2350 rpm calculated by means of the first harmonic components of velocities.
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Fig. 6 Acoustic power density [W/m2] radiated by test-gearbox for chosen resonant state
n = 2350 rpm calculated by means of the third harmonic components of velocities.




