
 

 

 

 

 

 

INŽENÝRSKÁ MECHANIKA 2005 
NÁRODNÍ KONFERENCE 

s mezinárodní ú�astí 

Svratka, �eská republika, 9. - 12. kv�tna 2005 

   QUANTITATIVE ANALYSIS OF FIBER COMPOSITE 
 MICROSTRUCTURE 

J. Gajdošík* 

Summary:  This work is concerned with the description of the process of 
retrieving color images from real composite systems together with their 
transformation into binary images. The fiber composites were used as a real 
composite, because of its future perspective use. The main part is dedicated to the 
comparison of various boundary conditions and processes for obtaining the two-
point probability function with various boundary conditions. The dominant 
purpose of this work is to determine the differences in three boundary conditions. 
In particular, the plain (no condition), mirror and periodic boundary conditions 
are considered. The possible computational methods are taken in consideration, 
too. The speed of evaluation is one of the most important issues and as such is 
emphasized. 

1.two-point probability functions 
Fundamental function and statistical moments. Consider an ensemble of a two-phase random 
medium. To provide a general statistical description of such a systems it proves useful to 
characterize each member of the ensemble by a stochastic function – characteristic function 
�r(x,�), which is equal to one when point x lies in the phase r of the sample and equals to 
zero otherwise, 
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where Dr(�) denotes the domain occupied by the r-th phase. Except where noted, composites 
consisting of clearly distinguishable continuous matrix phase are considered. Therefore, r = 
m, f is further assumed to take values m for the matrix phase while symbol f is reserved for the 
second phase. For such a system the characteristic functions �f (x,�) and �m(x,�) are related 
by 

 ( ) ( ) 1,, =+ αχαχ xx fm     (2) 

We write the ensemble average of the product of characteristic functions 
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where function Sr1,...,rn referred to as the general n-point probability gives the probability of 
finding n points x1, . . . , xn randomly thrown into a medium located in the phases r1, . . . , rn.  

Functions of the first and second order. Hereafter, we limit our attention to functions of the 
order of one and two, since higher-order functions are quite difficult to determine in practice. 
Therefore, description of a random medium will be provided by the one-point probability 
function Sr(x) 

 ( ) ( ),,αχ xx rrS =      (4) 

which simply gives the probability of finding the phase r at x and by the two-point probability 
function Srs(x1, x2) 

 ( ) ( ) ( ),,,, 2121 αχαχ xxxx srrsS =    (5) 

which denotes the probability of finding simultaneously the phase r at x1 and the phase s at x2. 
In general, evaluation of these characteristics may prove to be prohibitively difficult. 
Fortunately, a simple method of attack can be adopted when accepting an assumption 
regarding the material as statistically homogeneous, so that 

        ( ) ,rr SS =x       (6) 

 ( ) ( )., 2121 xxxx −= rsrs SS     (7) 

Further simplification arises when assuming the medium to be statistically isotropic. Then 
Srs(x1,x2) reduces to 

 ( ) ( ).2121 xxxx −=− rsrs SS     (8) 

Finally, making an ergodic assumption allows a substitution of the one-point correlation 
function by its volume average, i.e., volume concentration or volume fraction of the r-th 
phase cr, 

 .rr cS =      (9) 

Limiting values. In addition, the two-point probability function Srs incorporates the one-
point probability function Sr for certain values of its arguments such that 

           ( ) ( ),,:for 12121 xxxxx rrsrs SS δ==    (10) 
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where symbol �rs stands for Kronecker’s delta. Relation (10) states that the probability of 
finding two different phases at a single point is equal to 0 (see also Eq. (2)) or is given by the 
one-point probability function if phases are identical. Equation (11) manifests that for large 
distances points x1 and x2 are statistically independent. This relation is often denoted as the 
no-long range orders hypothesis  



 

2.Boundary conditions 
There are many possibilities how to statistically describe microstructure. In this work the 
attention is focused on the two-point probability function. This function is quite simple and 
easy to compute when compared with other descriptors. The two point probability function 
can be determined applying various boundary conditions. The literature offers the three main 
possibilities. Recall that the two point probability function can be obtained by throwing a 
needle of certain length in the image and counting how many times the ends fall in the 
selected color. The question is what to do, when one end of the needle falls out of the image.  

The first possibility is to expect that the image of microstructure is periodically repeated in 
each direction. This condition is the simplest one, as it allows using very efficient 
computational method described below. This first possibility is shown in Figure 1a. 

       

 a b c 

Figure 1: a) Example of binary image of microstructure with periodical boundary conditions. 

b) Example of binary image of microstructure with mirror boundary conditions. 

c) Example of binary image with no mirroring or repeating. 

 

The second possibility is to expect that the microstructure is mirrored. This approach is 
more time consuming, but is presented for the sake of comparison with other results. In case 
of unidirectional fibers it is probably not very efficient, but research of microstructure consists 
of many others fields of research, where technique can be very useful(Figure 1b) 

The third possibility, here termed as plain boundary conditions, is to disregard the throws, 
where at least one of the ends of the needle falls out of the image. This approach is probably 
the most accurate one, but significantly reduces the amount of obtained information. It is 
evident that long needles can be thrown just a few times to be totally contained in the image. 
If the needle with length of the diagonal of the rectangle is used, it can be thrown just one 
time. That is the reason, why the data of two point probability function have to be reduced of 
data with low reliability. (The needle is too long and therefore can be thrown just few times.) 
(Figure 1c) 

Based on the previous work it was possible to use 25 images, but only 18 images were 
eventually selected for the analysis. The visual evaluation consists of elimination samples 
which seem to be unuseful. If about one fifth of the image was fiber free it was clear, that the 
image experienced some error. 

 



 

3.Evaluation of the two-point probability function using Fast Fourier Transform 
method 
The fast Fourier transform method can be used only with the periodic boundary conditions. 
This method is much faster than the classical Monte-Carlo method and was used to as a basis 
to compare effectiveness of both methods. 

After selecting suitable inputs the two point probability function was calculated. In the first 
step the edge of the input image was cut to obtain a square bitmap. The reason was that the 
edge could be influenced by inaccuracy when taking images. That means that the largest 
image had size of 1 148 x 1 148 pixels. In the next step the size was reduced by 70 pixels in 
both directions to 1 078 x 1 078 pixels. The smaller image was selected 10 times from random 
positions of the largest image. The step 70 pixels was chosen, because the average size of 
fibers in images is c. 70 pixels. In each subsequent step the size was reduced by 70 pixels in 
both directions and the random selection was increased 10 times compared to the previous 
case 

After preparation and sorting of bitmaps the two point probability function was calculated 
for each bitmap. The results of this calculation were stored in the matrix of the same 
dimensions as the bitmap. Next step was to create the average result for each size. The 
average was calculated not only on the whole set, but also on partial sets constructed from 2, 
3, 4, … , Number of bitmaps of the specified size bitmaps. The value of average two-point 
probability function at the position ij was obtained as average value of independently 
computed two-point probability functions at the position ij. 

The last step was to determine a suitable measure of a difference among the two-point 
probability functions. As “an exact” two point probability function the function calculated on 
the largest image was chosen. To calculate the measure M, the following formula was used 
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In equation (13) W means the number of used points in the direction of width of the bitmap, H 
the number of used points in the direction of height of the bitmap. If every point of bitmap is 
used for evaluation of the measure W means the width of bitmap and H is the height of 
bitmap. Sij is the value of the two point probability function of an image taken in the point 
with coordinates i and j. Pij is the value of the two point probability function of the largest 
bitmap. This enables comparison of measures taken from bitmaps with variable sizes. 

Another measure MM was also considered and compared to measure M. The used formula 
follows 
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The variable dist should guarantee that the values of the two point probability function, which 
are more distant from the origin, have smaller significance than those which are closer. Quite 
surprisingly, this correction results in rather negligible difference. 

Because the measure M and measure MM were the same, just multiplied by almost a constant 
value, in the subsequent research, only the measure M was used as it is more simple to 
compute. 

4.Graphs of measures 
This part presents an overview of the measures M evaluated from the computed two point 
probability functions. It is evident that bigger bitmaps allow getting results with better 
reliability. Quite surprisingly, even for lower resolutions there is no common value, where all 
measures stabilize. The measure of the two point probability function oscillates around 
different value.  

The resolution displayed above each graph represents the area over which the measure M 
was evaluated. The values at horizontal axis are the numbers of used bitmaps for evaluation of 
the average two point probability function. The accuracy does not gain zero value at numbers 
of repeats 11, 21, 31, … . The line connecting the value of measure with zero is displayed just 
for the lucidity of graphs. The described example follows. 
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5.Evaluation of the two-point probability function using the Monte Carlo Method 
Due to computational demands of the Monte-Carlo method the simplifying conditions had to 
be applied to the evaluation. The detail description of the used algorithm is presented in this 
section. Two possibilities of simplification were considered. First, the value of the two point 
probability function could be computed for all available vectors of function, but not all data 
contained by the graph are used for the function evaluation. In other words the needles of 
every available length are used but just limited numbers of throws are done. Other possibility 
is to evaluate the function just for a few specific vectors, but all data stored in the bitmap are 
used for evaluation. In other words to throw the needles of just few chosen lengths but the 
needles are thrown into every point of bitmap. 

In the present work the second possibility was employed. The reason was that this 
approach allows comparison with results obtained by Fast Fourier transform method, which 
evaluates the function with use of all data stored in the image. This property is important as 
the goal of this research is to compare different boundary conditions. 



 

The step used through the bitmap was based upon the average size of one fiber. The 
average diameter of fiber was c. 70 pixels and one quarter of the diameter is approximately 17 
pixels. The used step was 15 pixels. For obtaining the step in horizontal direction the same 
relation was used and since the fibers are circles, both steps were the same. 

Another difference compare to the Fast-Fourier transform method is that the step reducing 
the bitmaps sizes was bigger. Recall that in Fast Fourier transformation method the step 70 
pixels was used which in the Monte Carlo method was set to 140 pixels and just one half of 
bitmap size reductions was done. 

 

 

6.Periodic boundary conditions 
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7.Plain boundary conditions 
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8.Mirror boundary conditions 
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9.Comparison of periodic boundary conditions with others 
In previous section statistical characteristics for different boundary conditions were 
compared. In this section the two-point probability functions with periodic, mirror and plain 
boundary conditions derived from one bitmap are shown. The difference between different 
boundary conditions presented, too. The difference is provided in a absolute value, since it is 
confusing to show negative and positive values with just one color. The two point probability 
functions are shown in first quadrant. The enormous computational demand associated with 
an exact evaluation of the function in every point is the main reason for this simplification. 

 

       

Figure 2: a) Two point probability function with periodic boundary conditions. 

 b) Two point probability function with plain boundary conditions. 

 c) Two point probability function with mirror boundary conditions 

 



 

    
Figure 3: a) Comparison of periodic and mirror boundary conditions. 

 b) Comparison of periodic and plain boundary conditions. 

 

10.Conclusions 

It is obvious from graphs that all boundary conditions can be considered as equal. The 
measure used for comparison is almost the same and behaves in a similar manner. The 
suggested measure cannot fully contain the difference between functions set at different 
resolutions of bitmaps. The reason is explained in the next paragraph at parable. 

The two point probability function behaves little bit like surface of water in pond after 
being hit by stone in the middle of the pond. If stones of different shapes, but quite similar 
size are thrown in pond, the waves close to place of hit are quite different but in a farther 
distance from the place of hits the waves are small. If the wave is small, the difference is 
small too. If the observer is monitoring just small area of the surface close to the place of hit, 
he will see that the differences between shapes of waves made by stones of different shapes 
are bigger than if he monitors larger area. The results from this research are same. The 
average values of measure are always smaller if determined from functions computed for 
large bitmaps. 

It is shown that the difference between periodic and plain or mirror boundary conditions 
are random and do not follow any regular pattern. Recall that the more important values of 
the two-point probability functions are close to the origin. The origin of graphs displayed in 
this work is in the left upper corner. All graphs look to be very similar in this area and even 
the differences are close to zero (are bright) in this part. 

Providing no boundary condition is superior to the other the only objective then remains 
the speed of evaluation. The periodic boundary conditions can be determined with the use of 
Fast Fourier transform, which is significantly faster than the classic Monte-Carlo method. 
The largest bitmaps in this work have resolution about 1000 x 1000pixels. FFTM is 
approximately 125 000 times faster than MCM for these dimensions. In particular, when 
using FFTM the evaluation lasted two minutes, while with MCM it would have taken almost 
half a year. 

The speed of evaluation with use of Monte-Carlo method is heavily influenced by the 
dimensions of input bitmap. Out of the measures M it follows that it is faster to use a set of 
smaller sections of the largest bitmap. The results of one big bitmap and set of sections are 
comparable but the result for one big bitmap is nevertheless more accurate. Due to the Fast 
Fourier method small time consumption I generally recommend to use this method on the 
largest bitmap, because it is still very simple. 


