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Summary: The contents of the paper is a comparison models of vibration of the 

cantilever beam with the backstop. The beam model is solved by analytical

method and also by using finite element method. The backstop is on the end point 

of the free part of the beam and is solved as a spring with the meaning stiffness. 

1. Introduction 

The main aim of the paper is to formulate a mathematical model and analyze of vibration of a 

cantilever beam with a free end, which is delimited by motion with a backstop. The

requirement to solve this problem relates with an activity of a valve of a small piston

compressor where in addition flow losses occurs. In generally so-called reed types of a valves 

are using in this type of compressors. These valves represents from design aspect cantilever 

beam with a small thickness of a various shapes.

In the solution of this problem is necessary to

form the model as accurate as possible, which 

may be used in future to optimize valve parts of 

compressors. As noted previously, model is 

based on vibration of a cantilever beam whose 

free end is in contact with a solid part by his

motion which determine a range of his

deflection. This range present a backstop, which 

is also necessary to specify mathematically. In

this paper, the backstop is perceive as a contact

of a beam with a spring with a meaning stiffness 

in comparison with a stiffness of beam. This vibration may be solved by a model with 

continuously distributed parameters which arise from Bernoulli-Euler theory. A backstop 

whose mathematical description present a spring with a specific stiffness is mainly solved as a 

force applied to a beam in contact point. The value of this force varying in dependence on the

deflection or on compression of the spring. This force acting only during contact of beam with 
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backstop and is included in equation of vibration as a reversible force, what are addicted for 

example in [1], [2], [3]. The next possibility how to analyze this vibration is application of

FEM, what represent a beam with a lumped parameters. This numerical method is in 

comparison with an analytical description of vibration of a beam more difficult because of 

time-consuming and proper choice of some parameters such as number of elements,

formation of matrix of a damping, etc. However on the other side this method gives bigger 

possibility in areas where the analytical solution become considerably more complicated

about what is dealing next part of this paper. 

2. Analytical solution 

Equation of motion of a forced bending vibration of a cantilever beam based on Bernoulli-

Euler theory may be expressed in form 

),()()(.
2

2

2

2

2

2

txq
x

w
xJ

x
E

t

w
xS  (1) 

where [kg.m
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] is the density, S(x) [m
2
] is the cross section area, E [kg.s

-2
.m

-1
] is the

Young’s modulus and J(x) [m
4
] is the area moment of inertia, q(x,t) [kg.s

-2
] is the external

load per unit length and w [m] is beam deflection. In this equation are already applied some

acceptable simplified assumption e.g. neglect of rotational inertia and also dismissed external

and internal damping etc. Is evident that to motion of the beam will occur only in the direction

of possible excitation and therefore the problem is solved as two-dimensional. And below we 

assume the uniform cross section over entire length of the beam. We assume the solution of 

equation (1) in form
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where function W(x) express the natural modes of vibration and function T(t) determine the 

time change of vibration deflection. By the solution of the equation (1) we obtain function 

W(x) in known form
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where  is natural radian frequency. By declaring of boundary condition for the cantilever 

beam with free end 
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we would obtain the function W(x) for every natural radian frequency. All external loading

acting to the beam are on the right part of equation (1), what can be for example pressure or 

the force from spring dependent on beam deflection in the contact point. This force plays its

role in particular solution of vibration. The homogenous solution is response to the initial 

condition of vibration. Their formulation are known in general and there is no point to deal 

with them now. 



Other approach is possible to apply if we realize, that in the moment of the beam’s free end

contact with the backstop – spring, is coming up the case of cantilever beam vibration with a 

elastic bearing in the contact patch of beam with this backstop. This case of beam bedding is 

again solvable, if we assume the solution of function W(x) with specific boundary conditions, 

then it is possible to modify these condition for already mentioned flexible bedding. It’s

possible to express the frequency equation for this case of bedding, when boundary conditions

in the place of flexible bedding are in form
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where K represents backstop stiffness and x0 is the contact patch, that represents the force

action with a stiffness K in dependence on deflection in given place (Fig.1). 
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Fig. 1 

From yet shown results, that in the case of positive beam deflection w(x0,t) in coordinate x0 – 

contact patch, function W(x) represents the natural modes of vibration with a free end and at 

the moment of transition of deflection w(x0,t) to negative value, in the solution of equation (2) 

figures the function W(x) for beam with flexible bedding end. The moment of transition is 

then solved by function T(t).

If we assume for simplicity, that none external force acts on the beam, the function T(t) will 

consist only of the homogenous part in the form

tBtAtT cos.sin.)( (7)

where constants A, B are obtained from initial conditions of the solution. In this paper, as will

be said later, is positive initial displacement w(x,t) from the static force F0 acting on the free

end considered. In the time of transition t= of the deflection to negative values in x0, the

initial condition for beam with flexible bedding will be exactly the deflection w(x, ) and its 

corresponding derivation over time. This solution applies until the moment, when deflection

in x0 traverses again to positive values, where in the moment of transition, the deflection and

her derivation are again initial conditions for the time function T(t) of the free end beam 

vibration. This process of “passing initial conditions” then continues analogical.

Based on initial conditions and by applying of Krylov’s functions, whose considerably

simplifies the work with the highest derivations, the frequency equation for the cantilever 

beam with the flexible bedding of the second end, where x0=l, can be obtained
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then function W(x) will be for every natural mode of vibration in the form
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for n=1,2,3,... and constant  we obtain by standard way from the condition of 

orthogonality of natural modes. 
n

E3

The consequential solution of free beam vibration with the flexible bedding of the second end 

is in the form
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Only for completeness we show, that if we would assume the solution of free cantilever beam

vibration with free end in form (index h)
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and the solution of free cantilever beam vibration with flexible bedding of the end (index d)
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than for  the transition from positive value of deflection of the end of beam (x0=l) to negative

value in time t= , the values of constants C, D would be:
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and for transition from negative value of deflection of the end of beam (x0=l) to positive value 

in time t=
*
, the values of constants A, B would be:
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3. Solution by finite element method

Transition from analytical solution to FEM (discretization of continuum) is possible after we 

define the matrixes of stiffness K and mass M. As noted previously, solution is for object-

lesson without inner and outer damping at the moment and so there is no need to define the 

matrix of damping B. It’s evident that it’s beam element, which have 2 degrees of freedom,

translation and rotation of element. It would be possible to deduce the matrix of stiffness of 

beam element Ke and the matrix of mass of beam element Me by means of cubical function 

for beam element type by some of known method e.g. [4],. 
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where E is the Young’s modulus and  is the area moment of inertia of beam element and 

is length of element. If we reconsider that soled problem is without damping effect, it is 

possible to write the equation of motional in form
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where displacement and rotary vector of nodal points and external forces vector is in form
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f i and Mi  are external 

forces and external moments.

For the discrete model the spring substituting the backstop, features as an external force at the

end point and it’s only in the case when the end point of the beam gains negative values. The 

dependency of this force on displacement of the end point can be graphically expressed as
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Fig. 2 

It means that external force vector f, if we don’t consider excitation, will be zero vector and in 

the case of transition of the end point to negative deflection it will have values ,

where constant K represents already mentioned spring stiffness. 
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4. Analysis achievement results 

A steel beam was chosen, as a concrete example, with the length 0,04 m with constant cross 

section area 0,008m x 0,000381m. The spring stiffness is K = 100.10
6
 kg/s

2
. The beam was 

cantilevered at the one end (Fig. 1). The initial conditions were identical for analytical as well 

as for numerical solution, namely the initial velocity of the beam was zero along all length 

and the bending axis of initial displacement was derived from static force Fo = 2 N acting at 

the free end of the beam. The solution of continuously distributed parameters as well as FEM 

was realized by software MATLAB and also the beam was modeled in software ANSYS and

the results were compared. The beam was discretized by 20 elements.

On the graphical dependency (Fig.3), the beam deflection in time at the end point x=l is 

showed (green), which has the contact with the spring and also the deflection in x= l/2 (red).

This dependency (Fig. 3) of deflection in time is the result of vibration of the beam with 

continuously distributed parameters.



Fig. 3 

From showed plot it’s possible to watch the path of the end point of the free part of the beam,

painted with green color, which is coming in the contact with the spring, where for its great 

stiffness against the beam stiffness, is coming to minimal overshoot to negative values of the 

beam deflection, which maximal value is up to 2,5x10
-7

 m. By red color, the deflection in the 

middle part of the beam x= l/2 is represented, where it is coming to overshoot and 

consequently to spring back to the positive values of deflection. It is interesting to remark that 

in the moment of contact with the spring in the time range between 1,25x10
-3

s and 1,79x10
-3

s

it is coming to local rebounds from the spring, even though the rest of the beam with its 

inertia, permanently continues in motion direct down. 

On Fig. 4 the dependency of the beam deflection solved by equation (1)  and also time 

dependency of the beam deflection obtained by finite element method – equation (15) are 

showed.



Fig. 4 

From Fig 4 is clear that analytical solution and FEM solution achieve good agreement what 

prove also difference of deflections w in time 3,17x10
-3

 s, what is the region with maximal

re-bounce of the end point of beam (blue and green curve). Value of this difference is 

w=3x10
-5

 m. The cantilever beam with the same parameters was simulated also in ANSYS, 

with nonlinear spring connected to the ground applied on the free end of the beam. The

characteristic of this spring is evident from figure 2. Time dependence of beam deflection in 

the end point x=l (blue curve) and the deflection in the beam point x= l/2 (yellow curve) are 

shown on from figure 5. 

Fig. 5 



On the Fig. 5 we can see a good agreement of the results of free vibration of cantilever beam 

with the backstop at the free end, which was replaced by spring with the meaning stiffness, 

solved as a vibration of the beam with continuously distributed parameters and the vibration 

of the beam solved by finite element method. 

5. Conclusion 

In present paper undamped vibration of the cantilever beam with the backstop on the free end 

was analyzed. The problem was solved with model of the beam with continuously distributed 

parameters, the principle of the separation of the beam vibration in two cases was used. The 

first case relates with the vibration with the free end where the necessary assumption for this 

case was the positive value of deflection at the free end. The second case of vibration 

occurred in time domain when the value of deflection at the free end was negative namely 

when the problem of vibration of the cantilever beam with the flexible bedding at the other 

end was solved. Because for demonstration we didn’t consider external excitation, only 

homogenous solution of vibration in both cases of beam was applied, where they “transferred 

the initial conditions of vibration” to each other. This model of the beam vibration was 

compared with the model solved as vibration with lumped parameters. The deflections in time 

were compared, where high agreement in the solution of both models was showed. This result 

was necessary to achieve, because for today’s solution status of vibration of the beam, the 

analytical model gives us reliable results but for solution with for e.g. more complicated cross 

section area over length and with continuously areas of backstop, already the analytical 

solution grind to considerably complicated forms and because discretized model have 

agreement in results, it is possible to solve these other cases with it. 
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