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HEAT TRANSFER WITH FUZZY COEFFICIENTS
P. Stemberk?!, J. Kruis'

Summary: The fuzzy set theory found its application in numerous industrial
fields. In this article, we present a simulation of heat transfer in a material
whose thermal coefficients are expressed in terms of fuzzy numbers. The pro-
posed method of solution is based on the engineers’ presumptions and utilizes
the basic fuzzy arithmetic operations, which is shown in an illustrative example
of the nonstationary case of heat transfer in a concrete wall.

1. Introduction

The uncertainty in engineering problems can be tackled in several ways, among which
the probabilistic approach is the most common. However, it is quite a usual case that
gathering satisfactorily large statistical data is rather expensive, or merely impossible,
which leaves the data uncertain. In such cases, it is difficult to justify the use of statistical
methods. On the contrary, the fuzzy set theory a priori takes into account the uncertain,
or vague, nature of data.

Once the theory of fuzzy sets is considered, the imprecise quantities can be treated
in terms of fuzzy numbers. The traditional definition of a fuzzy number is splitting the
fuzzy number into so-called a-cuts, which correspond to a membership degree denoted by
«. « ranges in the interval < 0;1 >. For o = 0 the widest possible range of the quantity
is obtained. For o = 1 we assume the quantity to acquire the most common value. The
bounds of a a-cut of a fuzzy number, which represents the value of a quantity, is acquired
either by a feasible experiment or by experience, which means there is no need to carry
out experiments in order to generate large sets of probable events.

In this paper, we propose a method for simulation of heat transfer, where the material
and load coefficients are set as fuzzy numbers. The objective of the work is to provide the
heat distribution with its lower and upper bounds throughout a structure and time, which
takes into account the imprecision of input data. The method and the interpretation of
results are explained and shown in an illustrative numerical example of heat transef in a
concrete wall.

2. Fuzzy arithmetics

In the following, these notations will be used; the membership function of a fuzzy set
A'is pa, where py = sup,cy . A, , for any fuzzy set A, denotes its a-level set for
a € (0;1], ie., Ay = {z € R: pa(x) > a}.
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2.1 Fuzzy number

A fuzzy set A over the real line is called a fuzzy number if the following conditions are
fulfilled;

e A is normal, i.e., there is a member with membership 1;
e A is compactly supported, i.e., the support of A is bounded;

e The membership function p, is upper semi-continuous and quasi-concave, which
ensures that the a-cuts A, are closed intervals.

A fuzzy number A may also be defined as a set of all its a-cuts, denoted by [a,,, T4 ]-
2.2 Fuzzy arithmetics

The usual arithmetic operations, such as addition (4), subtraction (-), multiplication
(x), and division (/) are extended to fuzzy numbers with the use of the extension prin-
ciple. Knowing that a fuzzy number may be equally represented by its a-cuts, which are
closed intervals of real numbers, and knowing how to use arithmetic operations on closed
intervals, the above mentioned four operations applied to two fuzzy numbers A and B
may be easily defined, e.g. (Wagenknecht et al., 1999). These basic fuzzy operations are
used in the proposed method.

3. Heat transfer

The governing equation of heat transfer is derived from Fourier’s law of heat conduction

Oz, = —kzig—wTi, where ¢, is the heat flow conducted per unit area in the direction of the
axis x;. Assuming the heat flow equilibrium in the analyzed area, we obtain
0 or 0 or 0 or or
—(ky—— —(ky— —(k,— = pc—, 1
7 8x)+8y(y8y)+8z( 5,) tI=reg, (1)

where f is the rate of heat generated per unit volume, p is the mass density and c is the
heat capacity. The boundary condition may be defined in the terms of either Dirichlet type
T = g, where g is a function prescribing temperature on the boundary, or Neumann type
%k = jq, which defines the amount of heat transfered through the boundary. To obtain
the governing equation for FEM we use Galerkin method, which yields the governing
equation in the form

Cr+Kr=Ff+b, (2)

where C' is the capacity matrix, K is the conductivity matrix, r is the vector of nodal
values, f is the vector of internal heat supplies and b is the vector describing the boundary
conditions. The equation (2) describes a general nonstationary distribution of tempera-
ture.

The equation (2) is used for solving the nonstationary case. The functions f and b are
now functions of time. Therefore, the initial condition (??) is considered. Assume that
the solution 7;_; at time ¢;_; is known. Then, consider a time step At = ¢; —t;_1 at which
the vector of unknowns is approximated linearly, which leads to

Ko+ Clri= a0 - ) +aut [~ K- )]ro 3)



It is desirable to choose 1) from the interval 1/2 > ¢ > 1. If 4 is a fixed value, then the
relation (3) is a linear algebraic equation system for the unknowns r;.

4. Proposed solution

The solution should consist of two stages. First, linguistic terms and imprecise in-
formation are translated to numeric values. Such procedures are proposed, for example,
in (Valliappan & Pham, 1993; Valliappan & Pham, 1995). Second, the algorithm which
models heat transfer is carried out. In this paper, only the second stage will be dealt
with.

According to the fuzzy set theory, the material characteristics (heat conductivity k,
heat capacity ¢ and mass density p) are taken for fuzzy because of the nature of concrete,
which is its inhomogeniety. These material characteristics are modelled in the terms
of fuzzy numbers and as such are used in the finite element method analysis of heat
transfer. The definition of a fuzzy number was proposed in section . The fuzzy material
characteristics, then, are denoted by [k,, ko], [¢,, Ca) and [P, Pal- Also temperature at
the boundary is treated as fuzzy, stemming from the imprecise information, and bears the
same denotation [T, T,)].

Although the relation (2) is originaly a differential equation, it is, with the use of
numerical integration, converted to a linear algebraic equation (3). Moreover, time is
regarded as crisp value, not fuzzy. Thus we are not forced to use special techniques
treating differential equations, e.g. (Ma et al., 1999; Kaleva, 1987; Buckley, 1992), and
we can last with the basic fuzzy arithmetic operations mentioned in section .

The fuzzy matrices of capacity and conductivity in the finite element method are given
by (4) and (5).
C = [ pelN"[N]d2, (4)

K= /QG;ZH ngDdQ, i=1,2,3, (5)

where N is the vector of shape functions. N is a crisp function, since we do not treat
geometry and dimensions as fuzzy. For 1D and the linear approximation, the matrices of
capacity C and conductivity K are derived as follows

cpA[1/3 1/6
C:pTuﬁ 1?3] (6)
k=71 @)

To determine the lower and upper bounds of the solution for (3), we choose the lower and
upper bounds of ¢, p and k for (6) and (7), respectively. Which means that the upper
bound of the capacity matrix C,, is acquired when the upper bounds of ¢,;, and p,, are
used

_ CwPupA[1/3 1/6
Cup = =1, [1/6 1/3]' (®)



The upper bound of the conductivity matrix K, is acquired when the upper bound of
kyp is used

FeupA

K,, = ]

9)
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Similarly, to get the lower bounds of the conductivity K., and capacity C},, matrices,
the lower bound values of ¢, p and k are used

o ClowplowA 1/3 1/6]
- klowA 1 -1
Klow - I [_1 1 ] : (11)

In matrices (6) to (11), A and [ denotes the cross-section area and the length of a finite
element, respectively. Both these geometric characteristics are set as crisp, not fuzzy
numbers.

To propose the algorithm for solving the problem of fuzzy heat transfer, we can pro-
ceed the following reasoning. If a material is being warmed, a combination of low heat
conductivity, great heat capacity and high mass density is needed to obtain slowest warm-
ing rate of the material. When fastest warming rate is being sought, then, a combination
of high heat conductivity, low heat capacity and mass density is to be used. If a material
is being cooled, a combination of low heat conductivity, high heat capacity and high mass
density is needed to get slowest cooling rate. And finally, when fastest cooling rate is
sought, a combination of high heat conductivity, low heat capacity is desired. From this
reasoning it is obvious that only two combinations of fuzzy matrices K and C, defined
by (8) to (11), in (3) are enough to secure the lower and upper bounds of the solution of
fuzzy heat transfer. It also depends on the ration between the heat conductivity £ and
the heat capacity ¢ and mass density p, but this fact does not need any special treatment.

In the 1D case, the derivation of the fuzzy governing equation is quite straigtforward.
In the 2D and 3D cases, where heterogeniety usually occurs, it should be considered in
advance which of the directions of heat transfer is of interest. The condition of thermal
equilibrium must hold, and thus it is clear that a higher amount of heat transferred in
one direction leads to a lower amount of heat which is transferred in another direction.
Therefore, it is impossible to transfer maximum amounts of heat in all directions at one
time, because this would violate the thermal equilibrium. Speaking in the terms of fuzzy
numbers, upper bound of heat flux in one direction means lower bound of heat flux in
the other direction, provided that we seek the maximum. This problem may also be
understood the other way round and treated as an optimization task.

5. Numerical example

A concrete wall is considered. The thickness of the wall is 40 centimeters. The modal
values of the material characteristics are quoted in Table 1 and are changed by + 10 %.
The geometry of the task is shown in Fig 1. The inner and outer surfaces of the wall are
both at the temperature 20 °C changed by + 10 % at the starting point of the analysis.
During the first minute the inner surface is heated to 800 °C changed by + 10 % and



conductivity | 1.67 J/(msK)
heat capacity | 840 J/(kgK)
mass density | 2400 kg/m?

Table 1: Material characteristics
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Figure 1: Example 1

maintains this temperature for one day. After the 24 hours from the initial heating the
temperature of the inner surface decreases down to the initial value 20 °C changed by +
10 % during next 24 hours and at that temperature it rests. The wall is investigated in
the points A to C, where A and C are right below the surfaces and B is in the middle of
the wall. Because the problem is axisymmetric, it is modeled with 1D elements along the
axis.

The results are in the form of the nodal temperatures over the time of analysis in the
A, B and C points in Figs 2 and 3 and the heat distributions in the wall after 1 hour and
after 1, 2, 3 and 4 days in Figs 3 to 5, respectively. The membership function is scaled in
grey shades from light grey for o = 0 to black for oo = 1.
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Figure 2: Temperature in A and B

6. Conclusions and discussion

In this paper, we propose a method for solving the problem of heat transfer with
fuzzy material and load coefficients as another engineering application to prove the good
applicability of the theory of fuzzy sets to engineering problems. The objective of this
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Figure 3: Temperature in C and temperature in wall after 1 hour
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Figure 4: Temperature in wall after 1 day and 2 days

work is to assess the most and the least possible temperatures in investigated parts of
structures over time due to imprecise information about the material and the load. The
results are expressed in the terms of fuzzy numbers, where the membership function has
the meaning of the degree of possibility. This analysis covers inhomogeniety, which is
typical for most building materials, and the imprecise information of input data and
their effect on the temperature distribution in structures. The computation is carried
out with the use of fuzzy arithmetics on fuzzy level cuts. The number of a-cuts depends
on how much it is to be learnt about the shape of the membership function of a nodal
temperature. One should carefully choose the number of a-cuts. A large number of a-cuts
may slow down the computation considerably. On the other hand, the knowledge of the
modal value and the least lower and most upper bounds is not satisfactory. To remedy
this situation we investigate the possibility of using the fast computation formulation of
fuzzy numbers, also known as (L, R)-numbers, to this model. The arithmetics on these
numbers has already been developed, see (Stemberk & Wagenknecht, 1999; Wagenknecht
et al., 1999).
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Figure 5: Temperature in wall after 3 days and 4 days
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