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Summary 
Cylindrical metallic shell subjected to localized impact loading evoking wave 

response was considered. Experiments were carried out employing the Double pulse 
holographic interferometry (DPHI) for evaluation of displacements, the Doppler 
interferometry (DI) for velocities and the piezoelectric accelerometers (PA) for the 
registration of accelerations, while the finite element (FE) method was used for the 
numerical analysis. The paper compares experimental and numerical responses with 
the intention to discuss the accuracy limits of experimental and numerical 
approaches.  

 
Introduction 

The experimental investigation of high-speed phenomena accompanying the stress wave 
propagation in solids is a difficult task. Preparing and carrying out the experiment is expensive 
both in terms of required sophisticated hardware, material costs and manpower resources; 
furthermore the satisfactory reproducibility is hard to achieve in microsecond time scales. On the 
other hand employing the FE method for treatment of stress wave propagation in linear elastic 
continuum is a well reproducible routine, even if it is highly time and memory consuming. A lot 
of finite element results could be generated easily after the initial exertion is invested in proper 
design of the FE model. Still the detailed evaluation of finite element results requires additional 
both menial and mental effort. The former stems from the fact that the data sets needed for 
comparison with experimental data have to be mined out from extensive data files generated for 
every node at each time step. The latter emanates from an impossibility to distinguish precisely 
between the actual fast-frequency phenomena and spurious side effects due to time and space 
discretizations. 
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 Reaching satisfactory precision, reliability and robustness of experimental and numerical 
methods is a never-ending but still a worth pursuing effort. Comparing results obtained by 
experimental and numerical analysis allows shedding light on the accuracy of the measurement 
as well as to ponder about the range of applicability of both approaches since none of them has 
built-in self-limiting features. See [Barrow, 1999]. 
 
Vehicle for comparison – impact loaded cylindrical shell 

A transient response of two cylindrical shells to impact loading was studied. Coordinate 
system, geometry, dimensions, loading and measuring points are indicated in Fig. 1 and in Table 
1. Material constants for individual shells were precisely set by measurements and used in 
computation. 

 

 
 

Figure 1  Shell geometry and loading 
 

Case     φD    φd    t    L    d/t 
A  321.2  310.8  5.20  280  61.77 
D  106.6  96.3  5.15  302  20.70 

 
Table 1  Dimensions of considered shells in [mm] 

 
Experimental method and tools 

The experimental results were carried out and kindly provided by the third author. They 
were obtained by three methods, i.e.  
(i) Double Pulse Holographic Interferometry (DPHI) with double pulse ruby laser Lumonics 

as a source of light for visualisation of the displacement field was used. A qualitative 
interpretation of the recorded field (frozen fringe pattern) gives the deformed shape of the 
shell surface along a chosen surface line at a given time. 

(ii) Contact-less Doppler interferometry (DI), Polytec OFV-3000, which produces normal 
velocity as a function of time at a given location.  

(iii) Measurement by piezoelectric accelerometer (PA), Bruel & Kjaer 4374, giving normal 
acceleration as a function of time at a given location.  

The methods and their implementations are described in detail in [Trnka, 2002].  



  

 
Numerical method and tools 

Different types of finite elements were used for model verification. Thin shell (semi-
Loof, [Irons, 1976]) and solid (triquadratic, [Bathe, 1996]) elements were employed for the task. 
Coarse and fine spatially uniform meshes are characterized by data in Tab. 2. 

 
 
Geometry                 Shell elements           Solid elements 
        coarse    fine    coarse     fine 
 
A No. of elements 4 836  19 344     9 672  - 

No of dof’s      64 031  253 795   163 083 - 
Max. frequency[MHz] 0.987  1.974     0.997  - 
Min. wavelength[mm] 5.36  2.68      5.31  - 
Mesh_size [mm]    2.68  1.34      2.68  - 

 
D No. of elements    6 840  27 360  13 680    44 100 
 No of dof’s  90 315  358 467 229 911   637 272 
 Max. frequency[MHz] 0.97  1.94      0.98  1.96 
 Min. wavelength[mm] 5.31  2.65       5.25  2.63 
 Mesh_size [mm]    2.65  1.33      2.63  1.31 
 

Table 2  Finite element mesh characteristics 
 
Meshsize and time step were designed from geometry considerations and from the 

Fourier spectrum of the loading pulse as described below. The Newmark time-step operator with 
no algorithmic damping solved the system of ordinary differential equations describing the 
transient task. Time step was set up in such a way that it equals the time interval needed by the 
longitudinal 1D stress wave to pass through a quarter the length of the smallest element. For 
details of methodology see [Okrouhlík, Pták, 2003]. 

The PMD software – a general-purpose finite element package designed and maintained 
in the authors’ institute – carried out the FE analysis. For details see 
www.it.cas.cz/manual/pmd/index.htm. The four-processor Compaq Alpha Server ES 40 was 
employed. 
 
Loading – experimental and FE pulses  

The impact pulse is produced by a loading element with exploding wire. The element has 
a shape of a tiny Plexiglas cylinder (diameter of 6 mm with 30 mm length) with a radial hole in 
which a thin (0.1 mm) bronze wire is embedded. The loading element is glued to the inner 
surface of the cylindrical shell. Gluing the element to the inner shell surface in perpendicular or 
oblique (a small adjustment of gluing surface is required) directions makes possible to evoke 
perpendicular or oblique loadings, respectively.  

Applying a high voltage pulse to the wire causes its explosion, inducing a mechanical 
pressure pulse whose shape and magnitude were calibrated by the classical Hopkinson’s bar 
technique. [Kolsky, 1963]. Since there is up to 30% uncertainty in the amplitude and shape of 
experimental pulses (see [Trnka, 2002, 2004]) an average pulse was elaborated out of the series 
of calibrated ones (see Fig. 2). Then its representative part (within the s50µ  range) was cut out 
of the average pulse and used as the ‘reference’ pulse.  



  

The quantities resulting from experiment are interpreted as if the actual loading is 
identical with a reference loading mentioned above. This might not be true. 

First – the explosion of the wire, the quality of gluing and soldering, the process of 
breaking the glue layer after the explosion, if any, and other effects are not perfectly 
reproducible.  

Second – even for a perfectly reproducible pulse, being applied to different shell 
geometries considered, one could expect different results due to the fact that the loading is of 
contact nature. 

For the numerical treatment it was the reference pulse, which was used as the input 
loading.  One can observe (Fig. 2) that the approximation of the reference pulse by means of 
Fourier’s series using 20 sine and cosine harmonics is adequate. Furthermore, the frequency 
analysis of the pulse proves that such an approximation is satisfactory since the frequency of the 
20th harmonics, i.e. 0.4 MHz, is still substantially smaller than the minimum of maximum 
eigenfrequencies appearing in Tab. 2. 
 

 
Figure 2  Loading pulse considerations 

 
Full and truncated pulses, approximated by 20 sine and cosine harmonics and depicted in 

Fig. 2, were considered in numerical analysis with intention to ascertain the influence 
uncertainties in the glue-breaking process occurring after the wire explosion. The full pulse 
contains the rise and fall of the force distribution within the s50µ interval. The truncated pulse 
ends when the tensional force appears for the first time. This might represent the glue breaking 
process between the loading element and the shell.  



  

 
Comparison of results 

The number of carried-out experiments limits the number of experimental results 
available. Actually, each set of results is obtained using new and slightly different loading 
conditions. 

The obtained experimental results are of ‘field’ and/or ‘point’ nature. The former are 
confined to the outer (visible) surface of the shell and consist of displacements at the shell 
surface at 3 time instants and are produced by the DPHI method. 

The latter are available at selected locations at the outer surface. The DI method gives 
normal velocities as functions of time while the PA measurements provide normal accelerations 
as functions of time 

In comparison with experiment there is an abundance of FE results. The field quantities 
(all components of displacements, velocities, accelerations, strains, stresses, values of energies, 
etc.) can be presented either as the spatial distributions for a given time or as the time sequence 
of spatial distributions (i.e. movie). The point quantities (sorted out of the field ones) can be 
visualized for a given space coordinates as a function of time or for a given time as a function of 
space coordinates. Furthermore the results are fully reproducible. 
 
Comparison of displacements 

 
 

Figure 3  Experimental and FE displacement pattern 

 
Fig. 3 shows comparison of displacements for D geometry obtained by the experimental and FE 
analysis corresponding to time s2.44 µ  after the beginning of impact. Experimental 
displacements are actually ‘almost normal’ components of displacements as seen by a camera in 
central projection. They are represented by black and white fringe pattern. The distance between 



  

the contour lines (both in experimental and FE results) corresponds to the quarter-wave length of 
the ruby light used. The FE displacements, plotted as contour lines, are those in y-direction (see 
Fig. 1) obtained by coarse-mesh shell elements. On the ‘upper’ surface of the shell both 
directions almost coincide. There is a qualitative agreement. A closer look reveals, however, that 
the fringe count does not precisely check and that there is a poor agreement in experimental and 
numerical results.  

Using the DPHI method, it is the quarter-wave length of the ruby laser light, i.e. 1.735e-7 
m, which defines the absolute threshold of measurement. Bellow this threshold the method is 
blind. For this type of loading the relative threshold is of the order of 2 %.  
 
Comparison of velocities 

Figure 4  Comparison of velocities; FE (A1 and A2) – red, experiment - blue 
 

The Fig. 4 shows the time distribution of experimentally obtained normal velocities for 
the A geometry at locations 1, 2, 3 and 4 (denoted by mp identifier) obtained by DI method 
compared with that of normal velocities by FE analysis. Four experiments were carried out to get 
velocity distributions at the above-mentioned four locations. The high-frequency contents of the 
experimental velocity distributions are attributed to speckle properties of coherent laser light and 
to thermal and electronic noise [Landa, Oral communication]. Using DI method the time origin 
of the experimental pulse is difficult to ascertain precisely [Trnka, 2002]. When presenting the 
comparison with FE data one has to shift the experimental time history for velocity forward or 
backward to get a sort of ‘best’ fit. The actual time shift is denoted by ts identifier in figures 
and is expressed in microseconds.  



  

The FE shell results for the coarse (A1) and fine (A2) meshes are not distinguishable in 
the scale of the figure. Since there is no visible difference of results with mesh refinement one 
can conclude that time step and mesh size are set correctly. From this fact, however, we cannot 
deduce that the results are ‘physically correct’. They are ‘correct’ within the validity range 
applicable to this particular FE model – the shell element a priori assumes what is happening 
within the shell thickness and does not take into account the actual wave processes occurring 
there.  

The distance of locations 1 and 3 from the loading point is 40 mm, while that of locations 
2 and 4 is 80 mm (see Fig. 1). Nevertheless, the observed results in mentioned couples of 
measuring points couldn’t be identical, since they are living at non-symmetrical positions of the 
cylindrical shell.  

A sort of ‘similarity pattern’ in results for locations 1,3 and 2,4 is a necessary (but not 
sufficient) condition for consistency of results. The FE data confirm this observation. The 
experimental data follow the similarity pattern and resemble FE results only at locations 2 and 3. 
The experimental data at location 1 do not follow the similarity pattern with those at location 3, 
furthermore they do not agree at all with FE data. A similar statement could be made for 
experimental data at location 3. One could conclude that the experimental data obtained at 
locations 1 and 3 are corrupted. Still, there is a good agreement in the occurrences of maxima 
and minima of the velocity response seen in Figure 4. 
 

Figure 5  Comparison of accelerations; FE – red, experiment - blue 
 



  

Comparison of accelerations 
The left column of subfigures (Fig. 5) shows the comparison of the time distributions of 

normal accelerations for the A geometry at locations 1, 2 and 3. The right column of subfigures 
presents that of the time distribution of normal accelerations for the D geometry at locations 2, 4 
and 6.  Experimental data were obtained by the PA method. The FE data are due to the 
computation with coarse and fine meshes of shell elements applied to A geometry. For D 
geometry only the results for coarse shell elements are plotted. The overall agreement is 
questionable. As before a different time shift of experimental data is needed to get a sort of 
agreement with FE data. Differences in experimental amplitudes, probably due to differences in 
the brisance of explosion and the variations of un-gluing process, are observed.  

Let’s concentrate in more detail on the time responses of the same location mp2 at 
different (i.e. A and D) shells. The responses (smooth lines) cannot be identical but evidently 
should have a similar pattern. The presented FE data behave this way. The experimental data are 
not similar in this respect (the differences are indicated by a single arrow in each figure – the 
hump in A shell data does not have its equivalent neither in D shell data for the same location 
nor in A data for different locations, i.e. in mp1 and mp3), furthermore the rise and decline pulse 
behaviours are completely different.  

Comparing the D shell data (Fig. 5) we observe the agreement in rise part of the pulse at 
mp3 and mp6 locations and disagreement at mp2 location. Double arrows indicate this. 
 

 
Figure 6  Results of multiple experiments (thin) compared with FE solutions (thick) 

 



  

Agreement between results obtained experimentally and numerically indicates that the 
acceptable reproducibility of the loading process by means of exploding-wire elements is hardly 
attainable. Furthermore, only one displacement pattern, two acceleration distributions and one 
velocity distribution can be obtained as a result of a single measurement.  

Fig. 6 depicts comparison of computed histories of velocities and accelerations for two 
measuring points with those obtained by repeated experiments. One can observe that there is a 
significantly smaller deviation between experimental velocity results than between those for 
acceleration. This might be attributed to the fact that the velocity measurement is secured by the 
Doppler interferometry, which is of contactless nature. The influence of added mass of 
accelerometer device was assessed computationally – only insignificant influence was observed, 
so the relatively large deviation in acceleration histories cannot be attributed to it. 

The shown comparison indicates presently achievable measure of agreements between 
different single-shot experiments and between experiments and FE analysis. The quality and 
adjustment of individual components of the measurement process is important but in this case it 
is the reproducibility of the loading process, which plays the crucial role in the sought-after 
robustness of the experimental method. From this point of view the concept of creating the 
above-mentioned reference pulse by averaging is rather questionable. 

A better consistency of the present experimental procedure might be achieved by 
simultaneous measurements of as large as possible number of quantities during a single 
explosion. 

 
FE self-check considerations 

Using FE modelling we are dealing with a discretized ‘continuum’. There is a countable 
number of dof’s, eigenfrequencies and a limited frequency spectrum. This means that the 
numerical model, for a given meshsize, is not able to distinguish frequencies above a certain 
limit.  

Internal forces acting between elements are limited to adjacent neighbours only. That’s 
why the stiffness and mass matrices are sparse in FE analysis. They could also be relatively 
narrow-banded if an efficient node or element numbering is secured. 

To find an evolution of the body response in time due to impact loading requires solving 
the system of differential equations in which the inversion of stiffness or mass matrices 
(depending on the mass matrix formulation and on the time integration method being employed) 
is needed. This way, the sparse structure of relevant matrices vanishes, and a sort of unlimited 
range of influence prevails. Theoretically – working with infinite number of significant digits – it 
means that we would get a nonzero response over the whole domain for any time greater than 
zero. Working with a standard double precision arithmetics, however, we would not observe any 
response which, in absolute value, is less than the smallest positive floating point number 
(around 2.2251e-308 in Matlab). 

All this fuzz is about margins of our ability to distinguish something against nothing. 
This is, however, crucial for any meaningful human activity. 

Practically we would have a limited range of influence given by energy transfer since the 
substantial part of the energy is always carried by low frequency components. 
 Seemingly unproblematic model of linear elastic continuum has embedded singularities 
in it – they are for example manifested by the fact that the displacement under the application of 
a point force tends towards infinity.  To a certain extent this property is retained when the 



  

continuum is treated by means of a FE model. Actually it is smeared out by the existence of 
shape functions but it is still well manifested by the observable increase of the displacement 
under the application of a nodal force with diminishing meshsize. The FE mesh made of ‘null-
sized’ elements would provide the infinite displacement under the application of a nodal force as 
the continuum model. So making a finer and finer mesh we are representing better and better 
those continuum properties that are mathematically correct but physically unacceptable. This is a 
sort of paradigm we are used to live with. Singularity in displacement response to a point loading 
is a well-known feature both in continuum and its FE representation as well and was treated 
elsewhere [Okrouhlík, Pták, 2003]. 

Modal properties of the continuum model pose another example of the continuum 
singularity. The continuum model has an unlimited spectrum of eigenfrequencies and infinite 
number of modes of vibrations. The FE model has finite number of eigenfrequencies and 
eigenmodes, furthermore the higher ones are distorted by dispersion. The highest eigenfrequency 
of the FE model is related to dimensions of the smallest element appearing in the mesh while that 
of the continuum model tends to infinity. The period of the FE eigenmode corresponding to the 
highest eigenfrequency is the shortest one, while that of the continuum model tends to zero. This 
is not, however, troubling us too much since the frequency corresponding to an element of 
continuum of the size of inter-atomic distance (10-10 m for metals) is of the order of GHz. 

 
Figure 7  Comparison of results obtained by shell and solid elements 

 
Fortunately, the nature is kind to us, since the energy is predominantly carried out by the 

lower modes of the spectrum.  



  

Fast transient problems, however, contain high frequency harmonics, and in FE 
modelling they require small elements and a lot of eigenmodes to be taken into account. If step-
by-step approach is used instead of modal superposition a very short time step of integration 
should be employed.  

The Fig. 7 shows comparison of displacements, velocities and accelerations as functions 
of time at the location mp1 as obtained by different elements (shell and solid) applied to two 
different shell geometries (A and D). The left column shows results obtained for the A shell 
computed by coarse and fine shell (A1 and A2) and coarse solid (A1 hex) elements. The right 
column shows results obtained for the D shell computed by coarse shell (D1) and coarse and fine 
solid (D1 hex and D2 hex) elements. The results for both geometries are similar, since the 
location mp1 is close to the loading point and the influence of different shell shapes is small. The 
results in this location are not yet influenced by wave reflections from the boundaries of the 
finite element model. There is not a visible difference between A1 and A2 shell results – the 
finer mesh does not ‘improve’ the solution. It only means that for a given geometry and loading 
spectrum the mesh size is set correctly.  

In Fig. 7 there is a visible time shift in results obtained by shell and solid elements. This 
is attributed to the fact that solid and shell elements represent different models of continuum. The 
shell element knows nothing about wave processes within the shell thickness since the thickness 
is just a computational constant and the mechanical phenomena occurring there are a priori 
assumed. The solid element has, however, the ‘active’ dimension in the normal direction of the 
thickness and is able to capture the wave and energy processes in this direction.  

One should realize that a too small number of elements in this direction disqualifies, to a 
certain extent, the results (notice the high frequency contents) due to false dispersion effects and 
thus devaluates the extended effort required for the fine mesh processing. 

Having, however, a really thin structure (thinness related to the frequency spectrum of the 
loading) and realizing that the energy contents of wave processes occurring within the thickness 
is negligible, we have to conclude that simple shell elements offer a more ‘reasonable’ solution 
devoid of false high frequency components. 

On the other hand the finer and coarse mesh results for solid elements agree remarkably 
well (Fig. 7) confirming thus the consistency of the approach.  

The visible time shift due to different element modelling, which is about 2 sµ  as shown 
in Fig. 7, could be attributed to the fact that the loading effects, applied from inside of the shell, 
need of about 1 sµ  to pass through the shell thickness. 

The above observations lead us to the opinion that the solid element model of the body 
being studied (Fig. 1 and Tab. 1) is actually more reliable, since it better represents the more 
flexible and more complex nature of shell geometry than that of a thin shell element model. The 
experiment, however, gives us no hint in this respect.  
 
 
 
 
 
 
 



  

Conclusions 
 When trying to ascertain the reliability of modelling approaches and the extent of their 
validity one has to realize that the models as a rule do not have self-correction features. That’s 
why we have to let the models to check themselves, be checked by independent models and let 
the systematic doubt be our everyday companion. 

It was shown how numerical methods could help ascertaining the reproducibility and 
precision of experiment and how the experiment could provide data for making computational 
procedures reliable, efficient and robust.  

We believe that the experimental and numerical synergy that has been pursued is needed 
for a proper establishment of precision of applicability limits of methods used for modelling 
nature. 
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