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Summary: Stress effects in an incompressible hyperelastic cylindrical speci-
men are specified for the torsion test and combined elongation–torsion tests.
The twisting couple and the axial force are specified for Hencky’s material model
and are compared with the classic models. The results include the well–known
Poynting effect.

1. Introduction

The validity of a particular hyperelastic theory is usually tested by comparison of
predictions of material responses of the rubber specimens with experimental results. Some
simple deformation modes are quite suitable for this comparison. The elongation or
compression load–stretch characteristics are classic experiments used for the assessment
of particular material model since the abundant experimental works of Treloar [16]. Later,
the experiments on natural rubber carried out by Rivlin and Saunders [14] became very
popular not only for verifications of different material models but also for the identification
of material parameters.

Rivlin and Saunders in the aforementioned article published data from the extension
test, the compression test, the pure shear test, and from the biaxial tests with constant
strain invariants, all of them carried out on the specimens cut from one piece of a rub-
ber band. Further, they presented experimental results of the torsion test and combined
extension–torsion test on a cylindrical specimens. Since then, the results of these experi-
ments served for comparison and verification of different material models of hyperelastic
material.

In this work, we pay attention to the response of rubber in torsion test and combined
elongation–torsion test of cylindrical specimens.

It should be stressed that in the course of torsion, the cylindrical specimens must be
loaded by axial force to fix the axial length. This effect is known as Poynting effect.
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Poynting showed in [10] and [11] that a wire when twisted lengthens by an amount pro-
portional to the square of the angle of twist. This result is expected from the analysis of
strain under finite pure shear, when second-order effects are supposed.

The analytical response of the Mooney–Rivlin material model [6] is linear and can be
found in [14]. Later, Ogden and Chadwick in their paper [8] presented the analytical
solution for a three–term Ogden’s material model [7].

The Hencky material model, which is based on the linear relation between the loga-
rithmic strain and conjugate stress, was presented in Anand [1]. In this paper, Anand
showed a good agreement of the proposed theory with experiment for moderately large
deformation in uniaxial strain, simple tension and compression and pure shear. Later
on, Anand [2] published the responses of the Hencky’s material model for the twisting
moment and axial force loadings in simple torsion and combined elongation–torsion tests
and showed that they are in a good agreement with data from the classic experiments of
Rivlin and Saunders.

However, different results can be found in a more recent article by Bruhns, Xiao and
Meyers, [3]. This discrepancy lead to the derivation presented here because the exact
solution was necessary for fitting the experimental data by Sedlan [15], [4].

In the first part, the kinematics of deformation is sketched. Stress conditions in the
twisted cylinder and in the cylinder which underwent elongation and twisting are given.
Subsequently, the relations for the magnitude of the twisting couple and axial force are
derived. These results are assessed in Section 7.

2. Kinematics of the deformation

Let (R, Θ, Z) be the cylindrical coordinates in reference configuration and their coun-
terpart in the current configuration are (r, θ, z). R is the radius, Θ represents the angle
oriented counterclockwise with respect to the Cartesian x-axis in the xy-plane and Z is
parallel to the axis of the cylinder, see Fig. 1.

r = λ−1/2 R

θ = Θ + τλZ

z = λZ

(1)

where τ represents an angle per deformed length and describes the relative distortion of
the top and bottom planes of the body per distance of the planes and is called twist.

The deformation gradient related to the Cartesian coordinates takes the form
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The Cauchy-Green deformation tensor C related to the cylindrical coordinates (R, Θ, Z)
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Figure 1: Extension and torsion of a cylinder, the cylindrical coordinates

is

C̃ =
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 (3)

Denoting
B = λ−1 + λ2 + λ (τR)2 (4)

we can rewrite the principal stretches as
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2
(5)

The logarithmic stretch tensor is
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3. Stresses

The stress conjugate to the logarithmic strain tensor is the logarithmic stress, see [5].
For isotropic materials, the stress obtained from the constitutive relation reduces to the



back rotated Kirchhoff stress T. For more details, see [12], [13] or [9]. The Hencky
material model is based on the linear relation between the logarithmic strain and the
logarithmic stress (see [1], [12])

T = Λ tr(lnU) + 2µ lnU (7)

where Λ and µ are Lamé constants. Because the deformation of any incompressible
material is volume preserving, the trace of the logarithmic strain tensor is zero, that is
tr(lnU) = 0. On the other hand, the stress components are not fully determined by
deformation as the hydrostatic part of the stress tensor must be determined from the
boundary conditions.

Substituting the logarithmic strain tensor (6) into (7), we get the distortional part of
the back rotated Kirchhoff stress tensor. The relation between the distortional part of
the back rotated Kirchhoff stress and distortional part of the Cauchy stress tensor is

σd = J−1 RTd RT (8)

where J = detF is the Jacobian of deformation, which is equal to one for incompressible
materials and R is the rotation tensor obtained from the polar decomposition of the
deformation gradient.

The components of the Cauchy stress tensor in the cylindrical coordinate system (r, θ, z)
are

σrr = −µ ln λ = −2µ (ln λ2 + ln λ3)− p
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ln λ2 (λ2

2 − λ2) + ln λ3 (λ2 − λ2
3)
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− p

σθz = 2µτRλ3/2 ln λ2 − ln λ3

λ2
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3

= 2µτrλ2 ln λ2 − ln λ3
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3

σzθ = σθz

σzr = σrz = 0

σrθ = σθr = 0

(9)

The equation of equilibrium corresponding to the stress field in the cylinder takes the
form

∂σrr

∂r
+

σrr − σθθ

r
= 0 (10)

where σrr, σθθ and σzz denotes the Cauchy stress components in radial, tangential and
axial directions, respectively, and σθz is the shear component of the stress field.

4. Load-deformation characteristics

Expressions for the twisting couple M and the axial force N required to compare
experimental data with prediction of the model can be obtained in the explicit form.



We suppose the cylinder with the original radius of R1. The force in the axial direction
causing the elongation is then

N = 2π

R1∫
0

r2

R
σzz dR = 2π

R1λ−1/2∫
0

σzzr dr (11)

The torsional couple M [Nm] is

M = 2π

R1∫
0

r3

R
σzθ dR = 2π

R1λ−1/2∫
0

σzθ r2 dr (12)

It can easily be proved that the equation (11) can be rewritten to the form

N = π

R1λ−1/2∫
0

[(σrr − σθθ) + 2 (σzz − σrr)] dr (13)

This procedure enables the exact integration of relation (11). The results are
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To illustrate the behaviour of the Hencky model for the biaxial deformation and to
compare it with another hyperelastic models we have to put the relations (14) and (15) into
dimensionless form. Denote the maximum nominal shear strain at the surface χ = τR1,
the non-dimensional expressions for M? = µ−1R−3

1 M and N? = µ−1R−2
1 N are
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and
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]ar

λ3/4
(18)

M? as a function of χ is illustrated in Fig. 2 for several values of λ. In Fig. 3, N? is
plotted as a function of χ2, again for several values of λ. In Fig. 2, the origin has been
shifted to the right for each successive value of λ so as to avoid congestion.

The special case of combined deformation, when the cylindrical specimen is loaded
only by the twisting moment, is obtained setting the axial force (18) equal to zero. This
can be solved numerically and the relation of the stretch on the twist is given in Fig. 4.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

χ

M
*

λ=1.0
λ=1.1

λ=1.2
λ=1.3

λ=1.4

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

χ2
N

*

λ=1.0

λ=1.1

λ=1.2

λ=1.3

λ=1.4

Figure 2: Dependence of M? on χ for
the logarithmic quadratic strain energy
function for indicated values of λ

Figure 3: Dependence of N? on χ2 for
the logarithmic quadratic strain energy
function for indicated values of λ
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5. Comparison with the standard models

The solution of the biaxial problem for Mooney-Rivlin material model was published
in [14]. The relations between M? = µ−1R−3

1 M and χ is linear

M? = π
(
C?

1 + C?
2λ

−1
)
χ (19)

where
C?

1 = C1µ
−1 and C?

2 = C2µ
−1 and µ = 2 (C1 − C2) (20)

The relation between N? and χ2 is also linear

N? = −π

2

(
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1 + 2C?
2λ

−1
)
χ2 + 2π

(
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2λ

−1
) (

λ− λ−2
)

(21)

The load versus stretch curves for neo-Hookean material model are obtained from the
relations for Mooney-Rivlin material model by setting C2 = 0. The curves of M and N
are, of course, also linear in terms of χ and χ2, resp.

The analytical solution of the biaxial deformation of a cylindrical specimen for the
Ogden material model was published in in [8] and can be written as

M = 2πτ−3µnλ
1/4αn−3/2

{
F

(
λ3/4, ar, αn + 2

)
+ F

(
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)
−

−
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F

(
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)}
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where the function F is

F (x, y, α) =

(
yα/2 − y−α/2

)2 −
(
xα/2 − x−α/2

)2

α
with F (x, y, 0) = 0 (23)

The axial force is

N = −πτ−2µnλ
1/4αn−3/2

{
F

(
λ3/4, ar, αn + 2

)
+ 2F

(
λ3/4, ar, αn − 2
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2
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The dimensionless form of equations (22) and (24) with µ?
n = µ−1µn and µ = 0.5µnαn

yields
M? = µ−1R−3M (25)

and
N? = µ−1R−2N (26)

The relations for the non-dimensional torsional couple and the non-dimensional axial
force are illustrated in Figs. 5 and 6.

6. Conclusions

The relations for the axial force and twisting couple in the torsion and combined
elongation–torsion tests were derived. It came out, that the expressions found in the
older paper by Anand [2] are exact and that Bruhns expressions contain unnecessary
approximations.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

χ

M
*

λ=1.0
λ=1.1

λ=1.2

λ=1.3
λ=1.4

logarithmic material model
Mooney−−Rivlin material model
Ogden material model

Figure 5: Dependence of the non-dimensional torsional couple M? on χ. Comparison of
different material models.

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

χ2

N
*

λ=1.0

λ=1.1

λ=1.2

λ=1.3

λ=1.4

logarithmic material model
Mooney−−Rivlin material model
Ogden material model

Figure 6: Dependence of the non-dimensional axial force N? on χ2. Comparison of
different material models.



7. Acknowledgements

This work was sponsored by the Grant Agency CR under post-doc project No. 106/03/D038
and the research project No. AVOZ 2076919.

References

[1] L. Anand. On Hencky’s approximate strain-energy function for moderate deforma-
tions. Journal of Applied Mechanics ASME, Vol. 46: pp. 78–82, 1979.

[2] L. Anand. Moderate deformations in extension–torsion of incompressible isotropic
elastic materials. Journal of Mechanics and Physics of Solids, Vol. 34(3): pp. 293–304,
1986.

[3] O. T. Bruhns, H. Xiao, and A. Meyers. Hencky’s elasticity model with the logarithmic
strain measure: a study on poynting effect and stress response in torsion of tubes
and rods. Archives of Mechanics, Vol. 52(4-5): pp. 489–509, 2000.

[4] P. Haupt and K. Sedlan. Viscoplasticity of elastomeric materials: experimental facts
and constitutive modelling. Archive of Applied Mechanics, 71: pp. 89–109, 2001.

[5] Anne Hoger. The stress conjugate to logarithmic strain. International Journal of
Solids and Structures, Vol. 23(12): pp. 1645–1656, 1987.

[6] M. Mooney. A theory of large elastic deformation. Journal of Applied Physics, Vol.
11: pp. 582–592, 1940.

[7] R. W. Ogden. Large deformation isotropic elasticity - on the correlation of theory
and experiment for incompressible rubberlike solids. Proceedings of the Royal Society
of London. Series A, A. 326: pp. 565–584, 1972.

[8] R. W. Ogden and P. Chadwick. On the deformation of solid and tubular cylinders of
incompressible isotropic elastic material. Journal of Mechanics and Physics of Solids,
Vol. 20: pp. 77–90, 1972.
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