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Summary: The analysis of the structure of frequency expressions corresponding 
to an arbitrarily restrained uniform single-span Euler-Bernoulli beam results in 
derivation of simple formulas, which allow to express the  frequency equation of a 
beam with more complex boundary conditions in terms of fundamental frequency 
expressions corresponding to beams with classical boundary conditions, such as 
clamped, pinned, free and guided.  

 
 
1. Introduction 

The purpose of the present paper is to demonstrate a simple method that allows one to find the 
frequency equations (characteristic equations) for a single-span uniform Euler-Bernoulli beam 
with rotationally and/or translationally flexible supports directly from the most simple 
frequency equations ϕi(λ) = 0, i = 1,2,...,6; corresponding to classical boundary conditions. By 
classical boundary conditions we mean end configurations such as pinned, clamped, guided or 
free, in which all the four end compliances are zero or infinite. 
 
2. Frequency equations revisited 

We consider an arbitrarily supported uniform Euler-Bernoulli beam. Modal and spectral 
properties are given by the relevant homogeneous eigenvalue boundary problem. For 
harmonic vibration the governing equation is 

 w x w xIV ( ) ( ) ,− =λ 4 0  (1) 

and in the case of generally restrained beam the boundary conditions are 
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Here x  is the nondimensional spatial variable normalized by the beam’s length L and 
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where Ti and Ri are the nondimensional translational and rotational compliances, respectively, 
λ is the nondimensional frequency parameter, Kti and Kri are the translational and the 
rotational spring constants, respectively. Subscript 1 corresponds to the left end x = 0, and the 
subscript 2 to the right end x = 1. 
Substitution of the general solution of the differential equation (1) 

 w x A x B x C x D x( ) cos sin cosh sinh= + + +λ λ λ λ  (3) 

into the boundary conditions yields a homogeneous system of linear equations for unknown 
costants A, B, C and D, viz., 

 G a( ) 0λ = , (4) 

where a=[A,B,C,D]T and G(λ) is a matrix of order 4 x 4, the elements of which are 
transcendental functions of the nondimensional frequency parameter λ. The form of G(λ) 
depends on the specified boundary conditions. In the case of a generally restrained beam one 
has 
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For a non-trivial solution of equation (4), the coefficient matrix G(λ) must be singular, 
which leads to the following frequency equation for the unknown frequency parameter: 

 F T R T R( , , , ) det[ ( )] .1 1 2 2 0= =G λ  (6) 

If the compliance Ti and/or Ri acquires the value of zero or infinity, we always substitute 
these limit values explicitlly in the frequency expression F as arguments. The symbols Ti 
and/or Ri are used only when the values of Ti and/or Ri are positive real. Thus, the frequency 
expression F(0,0,0,0) corresponds to the clamped-clamped beam, F(∞,∞,∞,∞) to the free-free 
beam, F(∞,R1,T2, ∞) to a beam with rotational spring on the left end and translational spring 
on the right end, etc. 

Our aim is to find relations among frequency equations corresponding to closely related 
boundary conditions. For this purpose it is not appropriate to consider the equations  ϕi(λ)=0 
and -ϕi(λ)=0 to be equivalent. Neither can multiplicative factors be ignored, and therefore we 
shall distinguish between the equations ϕi(λ)=0, 2ϕi(λ)=0 and λnϕi(λ)=0. Further, let us 
accept the following rules that are to be observed when forming the frequency equations and 
frequency determinants: 

Rule 1) The boundary conditions will be used in the order indicated by equations (2): that 
is, the first two rows of the matrix G(λ) result from the boundary conditions on the left side, 
while the last two rows of G(λ) result from boundary conditions on the right side of the beam. 

Rule 2) When the value of the non-dimensional compliance is infinity, it is understood that 
the boundary condition w(x) ± TiwIII(x) = 0 or wI(x) ± RiwII(x) = 0 is reduced to wIII(0) =0, 



 -wIII(1)=0, -wII(0)=0 or wII(1)=0. In other words, we keep the signs of the dynamical 
boundary conditions exactly as they appear in equations (2).  

The above rules guarantee that the signs of the frequency expressions are under control and 
are not changed randomly: e.g., either due to possible exchanges of the order in which the 
boundary conditions are used to form the frequency equations or due to the change of the sign 
of the simplified equations (2). Under the above conventions, the elements of the matrix G(λ) 
for various boundary conditions are given by the row vectors summarized in Table 1. 
 

Table 1: Entries of matrix G(λ) for various boundary conditions 
 

 Row of G  Compliance 
  Zero  Infinite Finite 

0<Ti<∞, 0<Ri<∞ 
First d0(0) d3(0) d0(0) + T1 d3(0) 
Second d1(0) -d2(0) d1(0) - R1 d2(0) 
Third d0(1) -d3(1) d0(1) - T2 d3(1) 
Fourth d1(1) d2(1) d1(1) + R2d2(1) 

where 
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3. Relations among frequency equations 
As is well known from the elementary theory of determinants, the determinant is a linear 
function of its rows (columns). For illustration, this means that 
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From the structure of the matrix G, equation (5), and from the Table 1, it is obvious that for 

a restrained beam at least one row of the frequency determinant is a linear combination of two 
row vectors di-1(i-1) and d4-i(i-1). By applying the above property (7) of determinants to the 
frequency expressions of the restrained beams, the following formulas are obtained: 
 
 F T F T F F R F R F( ,.,.,.) ( ,.,.,.) ( ,.,.,.), (., ,.,.) (., ,.,.) (., ,.,.),1 1 1 10 0= + ∞ = + ∞  
 F T F T F F R F R F(.,., ,.) (.,., ,.) (.,., ,.), (.,.,., ) (.,.,., ) (.,.,., )2 2 2 20 0= + ∞ = + ∞  (8) 

Here the dots denote zero, positive real or infinite values of explicitly not specified 
compliances. According to formulas (8), the frequency expressions are linear functions of 
each of the finite compliance. In other interpretation, the frequency expression, seen as 
function of the finite compliance, is a linear combination of two other, simpler frequency 
expressions. One of them is the frequency expression for a beam, in which the corresponding 
compliance is set to zero, and the other one is the frequency expression for a beam, in which 
the same compliance is set to infinity. The more arguments of the function F(T1,R1,T2,R2) are 

 



zero or infinity, the simpler the corresponding frequency equation is. As the finite compliance 
appears on the right side of equations (8) solely in the role of a multiplicative factor, each 
finite compliance can be eliminated from the frequency expression by subsequent expansion 
of frequency expressions in terms of each finite compliance. If this process of linear 
expansion is repeated, one ends up with the frequency expression where only the classical 
frequency expressions ϕi(λ) appear. For details and examples see Nánási (1994). 
 
4. Conclusion 
Relations (8) are the desired formulas, describing the relations among frequency expressions 
corresponding to various boundary conditions. The usage of formulas (8) in conjunction with 
Table 2 allows one to build up the frequency equation of an arbitrarily restrained beam from 
only classical frequency expressions without the need to perform tedious evaluations of 
frequency determinants. 
 

Table 2: Modified classical frequency expressions to be applied in formulas (8) 
 

Right end 
→ 
Left end ↓ 

-Clamped 
F(.,.,0,0) 

-Free 
F(.,.,∞,∞) 

-Guided 
F(.,.,∞,0) 

-Pinned 
F(.,.,0, ∞) 

Clamped- 
F(0,0,0,0) 

F ( , , , )0 0 0 0
2 2

4

=

− λ ϕ
 

F ( , , , )0 0
2 6

3

∞ ∞ =

λ ϕ
 

F ( , , , )0 0 0
2 5

5

∞ =

λ ϕ
 

F ( , , , )0 0 0
2 3

6

∞ =

λ ϕ
 

Free- 
F(∞,∞,.,.) 

F ( , , , )∞ ∞ =0 0
2 6

3λ ϕ
 

F ( , , , )∞ ∞ ∞ ∞ =

− 2 10
4λ ϕ

 
F ( , , , )∞ ∞ ∞ =

−

0
2 9

5λ ϕ
 

F ( , , , )∞ ∞ ∞ =

−

0
2 7

6λ ϕ
 

Guided- 
F(∞,0,.,.) 

F ( , , , )∞ =0 0 0
2 5

5λ ϕ
 

F ( , , , )∞ ∞ ∞ =

−

0
2 9

5λ ϕ
 

F ( , , , )∞ ∞ =

−

0 0
4 8

1λ ϕ
 

F ( , , , )∞ ∞ =0 0
4 6

2λ ϕ
 

Pinned- 
F(0, ∞,.,.) 

F ( , , , )0 0 0
2 3

6

∞ =

λ ϕ
 

F ( , , , )0
2 7

6

∞ ∞ ∞ =

− λ ϕ
 

F ( , , , )0 0
4 6

2

∞ ∞ =

λ ϕ
 

F ( , , , )0 0
4 4

1

∞ ∞ =

λ ϕ
 

 
Table 3: Classical frequency expressions in the traditional form 

 
ϕ λ λ λ1( ) sin sinh=  = 0 for pinned-pinned and guided-guided beams 
ϕ λ λ λ2 ( ) cos cos=  = 0 for pinned-guided beam 
ϕ λ λ λ3 1( ) cos cos= +  = 0 for clamped-free beam 
ϕ λ λ λ4 1( ) cos cos= −  = 0 for clamped-clamped and free-free beams 
ϕ λ λ λ λ λ5 ( ) sin cosh cos sinh= +  = 0 for clamped-guided and free-giuded beams 
ϕ λ λ λ λ λ5 ( ) sin cosh cos sinh= −  = 0 for clamped-pinned and free-pinned beams 
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