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Summary: The response of polymeric materials to harmonic loading can often be 
described by means of linear viscoelastic models. The paper brings formulae for 
the resultant complex elastic modulus and phase angle for basic viscoelastic 
bodies (Maxwell, Kelvin-Voigt and Standard Linear Solid) and their generalised 
versions, shows how the constants in these models can be determined from the 
response measured at various frequencies, and gives recommendations for the 
choice of a suitable model. 

 
 
1.  Introduction 

The deformation of polymeric materials under harmonic loading is also harmonic, but lags 
behind the load (Fig. 1). The phase angle δ depends on the frequency, and so also does the 
complex modulus E*, defined as the ratio of the stress amplitude σ0 and strain amplitude ε0. 
When designing a component, the properties corresponding to the frequency range of 
operation must be used; otherwise the actual response can differ from the expected. Thus, the 
dependence of stiffness and phase angle on frequency must by known for the particular 
material. This dependence can be obtained by fitting the data measured at various frequencies 
by a suitable analytical expression. This expression can be purely empirical (e.g. polynomial). 
A better way is to model the response by means of simple viscoelastic bodies consisting of 
springs and dashpots. The parameters (elastic moduli and viscosities) in these bodies are 
constant, independent of frequency, and the character of the model curves corresponds, in 
principle, to the behaviour of viscoelastic materials. This approach allows easy modelling of 
the response and is especially useful if also the relationship between the response and material 
composition or microstructure should be studied, or if one wants to describe the response in a 
wide frequency range, so that several groups of values, obtained by different methods of 
measurement (e.g. dynamic and quasistatic) must be combined. 
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Fig. 1   Response of viscoelastic materials to harmonic loading. 
 

The most often used viscoelastic models are the Maxwell body (Fig. 2a), the Kelvin 
(Voigt) body (Fig. 2b), and the Standard Linear Solid (2c, 3a). However, the frequency 
dependence of the response of real viscoelastic materials often differs from that predicted by 
these models. As it will be explained later, the simple bodies are able to describe the response 
only in a limited frequency range. Much better description can be obtained using more 
complex models. There are two principal general models: the general Kelvin-Voigt body, 
consisting of the Kelvin-Voigt elements in series, and the general Maxwell body, consisting 
of the Maxwell elements connected in parallel (cf. also Fig. 4). Often, better approximation is 
obtained by the general Standard Linear Solid, created from the above models by replacing 
the first body just by a spring (Fig. 4a, b).  

The principal information about various viscoelastic models can be found in literature, 
e.g. (Haddad, 1995, or Ferry, 1980). In the following section, the formulae will be presented 
for the complex modulus and phase angle for the Kelvin-Voigt body, Maxwell body and 
Standard Linear Solid, and for their generalised versions – all under assupmtion of linear 
viscoelasticity. In the Practical part, we show characteristic features of these models, and give 
advice for the choice of a model.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Kelvin-Voigt body (a), Maxwell body (b), and Standard Linear Solid (c). 
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2. Theoretical part 

In a spring, the stress is proportional to the strain, σ = Eε, while in a dashpot, the stress is 
proportional to the strain rate: σ = η dε/dt; E is the elastic modulus, η viscosity, and t is time.  
 
The Kelvin-Voigt body (Fig. 2a) 

The strain ε is the same in the spring and the dashpot. The total stress σ is the sum of the 
stress in the spring (which is in phase with the strain) and the stress in the dashpot (which 
precedes the strain by 90o), so that it precedes the strain by some phase angle δ. The stiffnes 
of the body can be characterised by complex modulus E* = σ 0 /ε 0; the subscript zero denotes 
the amplitude. For harmonic loading (Haddad, 1995),  

    ωτωηδ == E/tan  ,    ( 1 ) 

22 )(1tan1* ωτδ +=+= EEE       ,  ( 2 ) 

where ω is angular frequency and τ is the so-called relaxation (or retardation) time, calculated 
as τ = η /E. The complex modulus can be decomposed into two components: the storage 
modulus E’ = E* cos δ, which characterises the stress component in phase with the strain, and 
the loss modulus E’’ = E* sin δ, corresponding to the out-of-phase component.         
 
The Maxwell body (Fig. 2b) 

The stress σ is the same in the spring and the dashpot. The total strain ε of this body is the 
sum of the strain in the spring (in phase with the stress) and in the dashpot (lagging behind the 
stress by 90o). The resultant strain is delayed by the stress by the angle δ. The compliance of 
the element can be characterised by complex compliance C* (= 1/E*), with the in-phase and 
out-of-phase components. For harmonic loading (Haddad, 1995),  

ωτωηδ 1tan == E  ,   ( 3 ) 

22 )(1tan1* ωτδ +=+= EEE       ,  ( 4 ) 
 

The Standard Linear Solid (Fig. 3a) 

This model consists of a spring in series with a Kelvin-Voigt body. The same stress σ(t) acts 
in both the spring and the K-V body. The total strain ε(t) equals the vector sum of the strain in 
the spring „0“ (in phase with the stress) and the strain of the K-V body, which lags behind the 
stress by the angle δ1, given by Eq. (1). According to Fig. (3b), the phase angle can be 
obtained from the ratio of the out-of-phase component of the strain amplitude to the 
component which is in-phase with the stress: 

 

 

 

 

 

Fig. 3   Standard linear solid:  arrangement (a), diagram of strain amplitudes (b) 

 

 

ε10 
E0 

E1 

η1 τ1 

δ δ1 

ε10 cos δ1 

ε10 sin δ1 

ε00 

ε0 

a. b. 



    
11000

101

cos

sin
tan

δεε
δεδ

+
=  ,    ( 5 ) 

where ε00 and ε01 are the amplitudes of strain components in the spring and the K-V body. 
Using the following relationships between the stress and strain amplitudes,  

   δσσεσε tan1*; 1010010000 +=== EEE      , ( 6 ) 

and known relationships between trigonometric functions sin, cos, tan (and ωτ), we obtain 
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The resultant elastic modulus can be obtained from the ratio of the stress amplitude σ0 to 
the total strain amplitude ε0. According to Fig. 3b, ε0 is calculateded as the hypotenuse of the 
vector triangle, generally as: 
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where Σεi0cosδi and Σεi0sinδi are the in-phase and out-of-phase components of the total strain 
amplitude. Using again Eq. (6) and the relationships sin…, cos…, tan…, ωτ…, we arrive at 
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Equation (9) also illustrates the fact that a single standard linear solid can describe the 
changes in response only in a limited range of frequencies. For relatively slow processes, with 
(ωτ)2 « 1, the resistance of the dashpot is negligible compared to the spring E1, and the whole 
body behaves as the springs E0 and E1 in series. For relatively high frequencies, (ωτ)2 » 1, the 
resistance of the dashpot is very high compared to that of the spring, the Kelvin-Voigt part 
becomes stiff, and the whole body behaves as the spring E0 alone. The sensitivity of the SLS 
modulus E* to frequency changes is highest for such ω, where the expression ωτ1 (for given 
retardation time τ1) is comparable with 1, and becomes negligible for frequencies 10 – 100 
times lower or higher. Thus, more model bodies must be usually combined in order to 
describe the response of viscoelastic materials in wider intervals of frequencies.   

Remark: The described model is the Kelvin-Voigt variant of the Standard linear Solid. There 
is also the Maxwell variant, consisting of a Maxwell body in parallel with a spring. 
 
The general Kelvin-Voigt body 

This body is obtained by arranging several K-V bodies in series (Fig. 4a  without the spring 
E0). The same stress σ(t) acts in all K-V bodies, each having its complex modulus and phase 
angle. The total strain is calculated as the vector sum of strains of individual elements (see 
also Fig. 3). The resultant phase angle δ  and the total elastic modulus are obtained in a 
similar way as above. The formulae are not given here, but can be obtained easily from Eqs. 
(10), (11) for the general Standard Linear Solid, just by omitting the modulus E0 in each. 



The general Maxwell body 

This body is obtained by arranging several Maxwell bodies in parallel (see Fig. 4b without 
spring E0). Each Maxwell body has its complex modulus and phase angle. The strain ε(t) in 
all M-bodies is the same. The total stress is calculated as the vector sum of stresses in 
individual bodies. The resultant phase angle is obtained from the ratio of the total out-of-
phase stress component to the total in-phase component. The complex modulus E* and tan δ 
are derived in a similar way as above. Again, the formulae are not given here, but can be 
obtained from Eqs. (12) and (13) by omitting the modulus E0 in each expression.  
 
The general Standard Linear Solid  (GSLS)   

The general Kelvin-Voigt body (with dashpots in all K-V elements) cannot properly describe 
the instantaneous deformation on loading, while the general Maxwell body cannot describe 
the final (asymptotic) deformation after long time of loading, and recovery after unloading. 
An improvement is obtained by replacing one body in the above general models by a spring. 
There is a Kelvin-Voigt variant and a Maxwell variant of this general standard linear solid.  

The Kelvin-Voigt variant of GSLS  (Fig. 4a)  

The formulae for phase angle and complex modulus can be derived in a similar way as for the 
single standard linear solid above:    
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where E0 is the elastic modulus of the „lonely“ spring; the index i in the sums varies from 1 to 
the number n of Kelvin-Voigt bodies. 
 
The Maxwell variant of the GSLS  (Fig. 4b) 

The resultant expresions are: 

 
 
 
 
 
 
 
 
 
 

Fig. 4  General Standard Linear Solid: 
 a) Kelvin-Voigt variant, b)  Maxwell variant. 
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3. Practical part 

There are several ways how to find the constants in a viscoelastic model from experimental 
data. A simple way is to minimize the squared differences between the E* (or tanδ) values 
measured for several frequencies ω, and those calculated (for the same values ω) from the 
model, using, for example, Eqs. (10) and (11) written for the chosen number of elements. 
Excel’s Solver or any other curve-fitting program can be used. As the response of viscoelastic 
materials is described by two quantities, always both curves, E*(ω) and tan δ (ω) should be 
fitted. If only one of the functions is fitted (for example, tan δ), this fit can be very good, but – 
in some cases – the pertinent constants do not fit the other function (E*) well. It can be  
recommended to fit tan δ first, then E*, then again tan δ, etc. Often 2  – 6 steps are sufficient. 

In the choice of the model, two things should be kept in mind:  

1. Despite of different arrangement of springs and dashpots, both variants of the general 
Standard Linear Solid (i.e. the Kelvin-Voigt and Maxwell variant) can describe the 
response of a viscoelastic material equally well.  

2. The number of K-V (or M) bodies in the model can be chosen with respect to the shape of 
the empirical tanδ (ω) curve. For the curve with one „peak“, a simple Standard Linear 
Solid will be sufficient. A curve with two local maxima or steps can be approximated by a 
spring in series with two K-V bodies, etc.  

The situation is illustrated in Fig. 5. The complex modulus and phase angle, plotted here as 
functions of angular frequency, correspond to the general Standard Linear Solid consisting of 
a spring and three Kelvin-Voigt elements in series (Fig. 4a), with the parameters chosen as E0 
= 1 GPa (spring alone), E1  = 3 GPa, τ1 = 0.1s, E2  = 3 GPa, τ2  = 1 s, and E3  = 5 GPa, τ3 = 10 
s, using formulae (9) and (10). In the central part of the tanδ(ω) curve, we can see three steps. 
This is because the tan δ (ω) curve for a single standard linear solid resembles a Gaussian 
curve with one peak, while the body in our example can be interpreted as three standard linear 
solids in series. The distances between the peaks correspond to the steps between the 
relaxation times τi for individual K-V elements. For more flat curves, more elements are 
necessary. In the limit case of infinite number of elements, we could arrive at the continuous 
probability density of E(τ). However, good approximation for real materials is often obtained 
with a discrete model with a reasonably small number of elements, and the work with such 
models is much simpler than with probability densities (which must often be expressed in 
tabelar form). The discrete models are especially suitable for materials with more or less 
pronounced local maxima or steps in tan δ (ω). 

Figure 5 also demonstrates the equivalence of the Kelvin-Voigt and Maxwell variant of  
the Standard Linear Solid.  The curves in Fig. 5  are also plotted using formulae  (12), (13) for 



 

 

 

 

 

 

 

 
 
 
 

Fig. 5  Elastic modulus and phase angle as functions of frequency. Comparison 
of the Kelvin-Voigt and Maxwell variant of the standard linear solid. 

 
the Maxwell variant (Fig. 4b) with constants: E0´ = 0,560747 GPa, E1´ = 0,258189 GPa, τ1´ = 
0,0745872 s, E2´ = 0,113314 GPa, τ2´ = 0,844688 s, E3´ = 0,0677503 GPa, τ3´ = 8,900317 s. 
(These constants were obtained by minimizing the squared differences between the E* (and 
tan δ) values of the K-V and M variants. As we can see, both models overlap perfectly. The 
equivalence of K-V and M version of the general Standard Linear Solid is quite general. One 
can thus choose such model, which will better suit to the assumed use. (A remark. The 
characteristic relaxation times in the Maxwell variant were similar, but not identical with 
those of the K-V variant. In principle, it is possible to choose and fix the characteristic values 
τi in the model, and to fit only the moduli. However, the fit is often worse. 
 

4. Conclusion 

The response of polymeric materials to loading can be described by means of discrete linear 
viscoelastic models, such as the general Kelvin-Voigt body and the general Maxwell body, 
and the Kelvin-Voigt or Maxwell variant of the general Standard Linear Solid. In the paper, 
the formulae for the elastic modulus E* and phase angle δ of these bodies under harmonic 
loading were presented. These formulae enable easy determination of all constants in the 
model by fitting the E*(ω), tanδ(ω) data measured for various frequencies ω. This was shown 
on an example, as well as the equivalency of K-V and M variants of the general standard 
linear solid. Also the recommendations for the choice of a model were given in the paper.  
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