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Summary: Saltatory solid particles conveyed by fluid impact a channel bed from
time to time. As a result of the collision the particles receive angular velocity,
which gradually decreases with time. For numerical simulation of saltation it is
necessary to know values of the drag rotation coefficient. In this paper
experimental results of the rotating spherical particles moving in water are
described. The rubber spherical balls with density near that of water were used;
each of them was speeded up in a special chute that ensured that the particle
rotated in a given plane. Standard video system was used to capture particle
motion. Values of the drag coefficient of the rotating spherical particle were
determined in a dependence on rotation particle Reynolds number.

1. Introduction
A rotating solid sphere moving freely in a viscous fluid is a subject of interest in many
engineering applications. Knowledge of its behavior is also important for the numerical
simulation of the saltation process, one of the modes of the particle transport in an open
channel. The saltatory movement of particles near the channel bed is often modeled by solid
spheres, and it is needful to know the particle behavior, values of forces and of the moment of
forces acting on the particle in dependence on the time and particle position.

The drag moment M of a sphere rotating around its diameter D in the fluid depends on the
particle angular velocity ω and radius r, density ρ and viscosity ν of the fluid. Sawatzki
(1970) described the reliable experimental and theoretical data for this case in the
dimensionless form. However, the data were obtained for the relatively large scale sphere of
diameter D = 240 mm rotating with a constant angular velocity around fixed axis in a viscous
boundless fluid, which was motionless in infinity. But the particle conveyed by fluid in a
channel has not only angular velocity but also a translational one, which is usually different
from a local velocity of the fluid in the channel. Therefore the data must be examined for the
case of the rotating particle moving in the fluid with different translational velocity.
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Between two subsequent collisions with the channel bed the saltating particle moves and
rotates in a fluid freely suspended. Its translational and angular velocities change slowly
hence we can consider the quasi-steady state, assuming that at any time the value of the drag
moment reaches the same value as that for the steady case with the same value of the angular
velocity. However, the effect of the translation velocity on the value of the drag moment must
be studied.

2. Dimensional analysis

Let us consider a rotating spherical particle of radius r moving in the fluid with density ρ and
with coefficient of kinematics viscosity ν. The absolute value of the particle translational
velocity is V  and of the particle angular velocity isω . The angle between the vector of the
translational velocity and the direction of the angular velocity vector is α . If M denotes the
drag moment which fluid acts on the particle with then it follows from the π -theorem
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The aim of the present experimental investigation is a determination of the drag moment
M and its dimensionless form – the drag rotation coefficient Cω as the function

( )αωω Re,,RefC = . The data of Sawatzki (1970) correspond to the case of Re = 0. Lamb
(1932) proved that also in the case of 1Re <<ω  the dependence of drag moment on angular
velocity is linear
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where ρνµ =  is coefficient of dynamic viscosity.

     For saltating particles values of the rotational Reynolds number can vary from a few tens
for the sand particles less than 1 mm to a few tens of thousands for the gravel particles with
size in the range of centimeters. For this reason the expression (1) supposes the more general
quadratic dependence of M onω .



3. Experimental study
The experiments were carried out in a rectangular glass vessel of dimensions 300x200x800
mm. Water surface was kept on the level 730 mm. The rubber spherical balls were used as
model particles, diameter and mass of the balls are shown in Table 1. The hairlines were
drawn on the balls along two perimeters of the ball with angle of  900 between them to make
possible an estimation of particle rotation in the fluid. Each measured particle was speeded up
in the special chute that was inclined to water surface at angle from 50 to 60 degrees. This
chute ensures particle rotation in a given plane. Different levels of the initial high of the
particles in the chute were used to provide different values of the initial translational and
angular velocities of the individual particle. Immediately after the particle entries to the water
the values of the translational Reynolds number were below Re < 20 000 and the values of the
rotational Reynolds number were Reω  < 40 000.

Motion of sand or gravel particles is too quick and a high-speed video system must be
used for its study. However, as it follows from the dimensional analysis, the drag rotation
coefficient is independent on the particle density and hence it can be chosen arbitrarily. For
this reason the balls density was chosen nearly to that of water what makes possible to
visualize the particle motion by a standard video system with image recording at the rate 50
frames per second. For each experiment 150-200 images were obtained. From the images
geometric and kinematic properties of the particle motion were found. However, only the
parts of the images out of the unsteady entrance region, were used for analysis of the
experimental data. Fig. 1 shows an example of the realized experiments.

Fig. 1 Images of particle motion

4. Method of analysis
The equation of rotational motion of a solid body is

                                                           M
dt
dJ =
ω ,                                                      (3)



where J is the moment of inertia of the body. For a sphere of the mass m the moment of
inertia is 24.0 mrJ = . The equation (3) allows to find the dynamic parameters of the body if
its kinematics parameters are known and vice versa.

Table 1. The balls parameters

Particle No. diameter

d [mm]

mass

m [g]

balls density

ρs [kg /m3]

     1 36.4 25.3    1 000+

     2 36.2 24.4       980

     3 25.6 8.8    1 000+

     4 21.6 5.6    1 060

     5 21.5 5.2    1 000

     6 21.3 4.8       950

     7 14.6 1.6       980

A typical time dependence of the particle angular displacement ∆ϕ for time interval
∆t = 0,02 s between two consecutive video images is illustrated in Fig. 2. The value of the
angular velocity ω  can be obtained as ω = ∆ϕ /∆t. To solve the equation (3) it is necessary to
know also the angular acceleration – i.e. derivation dω /dt, which is hardly possible to find
from the data in Fig. 2 with appropriate accuracy. Thus two different ways were used to
analyze the experimental data.

a) From Eqs. (1) and (3) after integration follows
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Let us now consider that ωC~  is average value of the drag rotation coefficient ωC  in the
time interval from 0t  to t:
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If ωC remains constant over the time interval from 0t  to t then ωω СС =
~ . The expression

(4) does not contain the derivation of angular velocity ω  in time.

b) The dependence of ϕ∆  on t can be fitted by a polynomial of the fourth order (see the
curve 2 in Fig. 2). Since the angular velocity is t∆∆= ϕω  the particle angular
acceleration dtdω can be set as the derivation of angular velocity in time. In this case
the drag rotation coefficient ωC  is obtained as a smooth function of time.



As we know the value of the angular particle velocityω  in the given time t, the value of
the particle rotational Reynolds number ωRe  can be determined and relationship between ωC
and ωRe  becomes known.

Fig. 2 The dependence of the particle angular displacement ϕ∆  between two consecutive
video images on time t. 1 - experimental data; 2 – polynomial approximation.

5. Experimental results
The experimental data were processed using both above mentioned ways of analysis. Results
of the processing for the particle No. 2 are shown in Fig. 3. The scattering of the experimental
data is large but the fitted curve is near to the results of Sawatzki (1970) especially for
relatively large values of the time interval (t – t0 ).

Result of the experimental data processing according to the first method of analysis for all
measured particles (No. 1- 6) is shown in Fig. 4. The mark 1 corresponds to the data of
Sawatzki (1970) for the drag rotation coefficient of the large sphere (D=240 mm) rotating
with constant angular velocity in an infinite motionless fluid. Three straight lines approximate
his data:

1. ωRe ≈10, 1Re −≈ ωωC  ;

2. 1 000 < ωRe < 40 000, 21Re −≈ ωωC ;

3. 400 000 < ωRe <107, 51Re −≈ ωωC .



Fig. 3 Variation of the drag rotation coefficient Cω  with Reω  for particle No. 2
1- method a) of the experimental data analysis; 2 - Sawatzki (1970); 3 – method b) of the

experimental data analysis; 4 - curve fitting of the method a) of the experimental data analysis

Fig. 4 Dependence of the drag rotation coefficient Cω on the Reynolds number of the rotating
particle Reω. Comparison of the experimental data with the data of Sawatzki (lines 1)



The present experiments were performed in the range of the particle rotational Reynolds
number ωRe  from 200 to 40 000. A considerable scattering of the experimental data in Fig. 4
in comparison with the results of Sawatzki (1970) is due to the imperfection of the particle
shape – actually the particles were not exactly spherical with a smooth surface, but they are
closer to the real particles in the natural saltation process. Also the translational movement
influences the accuracy of the drag rotation coefficient determination. However, it is shown in
Fig. 4 that in the studied range of the translational velocity ( Re <20 000) the effect of
translational motion on the drag rotation coefficient is relatively small. Therefore the data of
Sawatzki (1970) for the drag rotation coefficient of the sphere that rotates with constant
angular velocity in the motionless fluid can be used for the numerical simulation of the
saltation process with a sufficient accuracy.

Fig.5 Trajectories of the all measured particles



The trajectories of the particles No. 1 – 6 are shown in Fig. 5. The Magnus force MF  acts
on the rotating particle in the direction normal to both the translational velocity vector RV  and
the angular velocity vector ω . It can be expressed from the following equation

                                                           ( )RMM VCF ×= ωρ ,                                             (6)

where MС is the dimensionless coefficient of Magnus force.

     The influence of Magnus force on the particle trajectory is visible for the particles with
larger diameter and greater mass (No. 1, 2, and 3). The small particles (No. 4, 5, and 6) lose
the most part of the energy in the unsteady entrance region, therefore their translational and
angular velocities are small and the effect of the Magnus force is also small.

6. Conclusions

The results of experiments with rotating spherical particles moving in the water are described.
The experiments were performed for the rotational Reynolds number ωRe < 40 000 and the
translational Reynolds number Re < 20 000. It is shown that the influence of the translational
particle motion on the values of the drag rotational coefficient is small in the studied range of
Reynolds numbers. Therefore the data of Sawatzki (1970) for the drag rotation coefficient of
the large sphere (D = 240 mm) that rotates with constant angular velocity in an infinite
motionless fluid can be used for the numerical simulation of the saltation process with a
sufficient accuracy.
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8. Notation
ωC    - drag rotation coefficient

MС   - dimensionless coefficient of Magnus force

MF   - Magnus force
J      - particle moment of inertia
M    - drag moment of the rotating particle in fluids
m     - particle mass
r      - particle radius
Re   - translational Reynolds number of the particle

ωRe - rotational Reynolds number of the particle
 t      - time



0t     - initial time
∆t    - time between two consecutive video images;

RV   - particle slip velocity vector (difference between translational velocity of the particle and
fluid),

V     - absolute value of the particle translational velocity
α    - angle between the translational velocity and the angular velocity vectors
ϕ∆  - particle angular displacement between two consecutive video images

µ     - coefficient of dynamic viscosity
ν  - coefficient of kinematic viscosity
ρ     - density of fluid
ρs    - density of solids
ω    - particle angular velocity vector
ω    - absolute value of the particle angular velocity

0ω   - absolute value of the particle angular velocity in the time 0tt = .
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