

APPROXIMATION OF WALKING ROBOT STABILITY MODEL

Jiří Krejsa*, Robert Grepl*, Stanislav Věchet+

Abstract: The paper compares global and local approximation methods used for
walking robot stability model. Global approximators are represented by
feedforward multilayer neural network (FFNN) trained by gradient method; local
approximators are represented by Locally Weighted Regression (LWR) and
Receptive Field Weighted Regression (RFWR) methods. Global approximators try
to learn global non-linear function which fits all the training data (minimizes
training error), while local approximators use spatially limited data in query
point neighborhood to generate appropriate response. Various aspects of used
approximation methods are discussed (precision, robustness, computational and
memory requirements).

1. Introduction
Our research activities are presently focused on modelling of quadruped walking robot.

The properties of designed model has to be different according to different requirement posed
on model. Paper [3] describes the design and characteristics of dynamic model of stability
built in Matlab/Simulink/SimMechanics.

There are two main reasons why it is not possible to use this model for real-time control
of the robot:

- long time of simulation (in seconds) on ordinary PC
- the energy consumption - the control algorithm has to work on microcontroler (not on PC)

The main goal is to build an approximation model which can be used instead of
SimMechanics model. The complexity of algorithm should allow implementation on
microcontroler with real-time speed of computation.

2. Materials and methods

2.1. Scheme of approximation model

We consider the simple type of gait, often called static gait. Three legs are in contact
with the ground permanently, fourth is changing its position. The scheme of model is shown
on Fig. 1.

* Ing. Jiří Krejsa, PhD., Ing. Robert Grepl: Institute of Thermomechanics, CAS, Mechatronics Centre
Brno, Technická 2, 616 69, Brno, tel: +420 54114 2885, email: jkrejsa@umt.fme.vutbr.cz
+ Ing. Stanislav Věchet, Institute of Mechanics, Mechatronics and Biomechanics, FME, BUT,
Technická 2, 616 69, Brno

ENGINEERING MECHANICS 2004
NATIONAL CONFERENCE
with international participation

Svratka, Czech Republic, 10 - 13 May 2004

Fig. 1. Model scheme

The positions of stable three legs and the vector of
gravity (can have various direction with respect to local
robot coordinate system) form the inputs into the model. Last
input called "ID" describes the type of moving trajectory of
leg selected from certain small set.

During the first numerical experiments we used
simplified schema of model. Motion in plain was considered
only, fourth leg makes no movement. The reason was the
size of state space of model shown on Fig. 1. In spite of such
simplification, the model is better than the very simple one
actually used in learning algorithms (triangle of stability).

The extension of simplified model close to general one (Fig. 1) can be performed. When
using neural networks the segmentation of the state space would be an answer, however, one
would expect the local approximators to deal with the general model itself.

2.2 Neural networks
Traditional feed forward layered neural networks with single hidden layer were used.

Training algorithms included well known Levenberg-Marquardt algorithm (LM) and Broyden,
Fletcher, Goldfarb, and Shanno update (BFGS) as representatives of quasi-Newton algorithms
and Scale Conjugate gradient (SCG) algorithm as representative of conjugate gradient
methods. We consider the methods generally well known, detailed information can be found
in e.g. [2].

2.3 Locally weighted regression (LWR)
LWR is simple approximation method with locally linear model, based on the least

squares method, introduced in [1], which minimizes simple criterion

()2

1

ˆ
n

i i
i

C y y
=

= −∑
(1)

where n is input dimension, yi represents given output, ˆiy is the fitted output. A linear model
is defined as an equation with linear coefficients 1 2y p x p= + , where p1,p2 are unknown
coefficients. For n given points we solve a system of n linear equations with two unknowns.
In matrix form, linear models are given by the equation

 =y Xβ (2)
where y is the output matrix, X is the input matrix and β is matrix of unknown parameters.
The equation can be solved as

 ()
() 1

T T

T T−

=

=

X y X X β

β X X X y

(3)

In Locally weighted regression method, the prediction depends on distance between query
point and given points in close neighborhood. Typical distance function is Euclidean distance

 () ()2,E i
i

d = −∑x q x q (4)

where q is the query point, xi is the ith component of vector x. A weighting function or kernel
function K() is used to calculate a weight for each data point. Typical weighting function is a
Gausian

 () ()EDd
EK d e−= (5)

where dE is the euclidean distance and D is a distance metric. Parameter D determines the
width of the gausian kernel.

The weight for each stored data point is

 ()(),i iw K d= x q (6)

The weights form a diagonal matrix W with diagonal elements Wii=wi. The weighted input Z
is computed as Z = W X. Equation no.3 is solved for β using the new variable

 ()
() 1

T T

T T−

=

=

Z y Z X β

β Z X Z y

(7)

The only open parameter in equation 5 is the distance metric D, which can be optimized by
leave-one-out cross validation: for all data for i to n, temporarily exclude { },i ix y from

training data, compute LWR prediction ˆiy and compute error ()2

1

ˆ
n

i q
i

e y y
=

= −∑ . This

algorithm is used with different distance metrics D and D with minimal error is chosen as
optimal.

2.4. Receptive Field Weighted Regression (RFWR)
Receptive Field Weighted Regression algorithm (RFWR) automatically creates

structures necessary for solving regression tasks. The algorithm approximates data using
spatially limited linear models. The size and shape of receptive fields of particular linear
models, as well as parameters of local linear models are adapted independently. The
algorithm was first introduced in 1997 [4].

The goal of RFWR is to create a system of receptive fields for incremental function
approximation. The prediction of output ŷ for input x is calculated as normalized weighted
sum of particular receptive fields predictions ˆ ky :

1

1

ˆ
ˆ

K

k k
k

K

k
k

w

w

=

=

=
∑

∑

y
y (8)

Weight kw corresponds to the activation of corresponding receptive field and is
determined from the size and shape of receptive field, which is characterized by kernel
function. In order to obtain smooth approximation the suitable kernel function must be
smooth and symmetric, eg. Gaussian kernel:

 () ()1exp
2

T
k k k kw ⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
x c D x c , where T

k k k=D M M

which gives parameters of receptive field by its locating in space kc and defining the size and
shape of receptive field through positive definite distance matrix kD . This matrix is further
represented by upper diagonal matrix kM .

The relation between input and output data in each receptive field is given by simple
parametric function. One possible way is the use of locally linear models:

 () 0,ˆ T T
k k k k kb= − + =y x c b x β , ()(),1

TT
k= −x x c . (9)

The learning algorithm adapts the parameters of receptive fields (kM , kc , kβ) for each

field independently. Receptive fields are added and pruned according the need, therefore the
number of receptive fields corresponds with the problem to be solved.

Learning algorithm therefore consists of three stages:
1. adaptation of linear model parameters kβ
2. adaptation of distance matrix kD
3. adding and pruning of receptive fields

Ad 1)

Learning of linear model parameters β is simple because the problem is linear. Using n pairs
of training data (input 1 2(, ,...,)n=X x x x , corresponding output Y) and weight matrix W
with corresponding weights on main diagonal the parameter β can be obtained by weighted
regression:

 () 1T T T−
= =β X WX X WY PX WY (10)

To avoid explicit inversion of the matrix one can use recursive least square method.
Adaptation rule for β for given data element (),x y is then:

 1 1n n n T
cvw+ += +β β P xe , where

1 1 n T n
n n

T n

w
λλ

+

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

P xx PP P
x P x

, nT
cv = −e y β x , ()(),1

TT
k= −x x c (11)

This formula already contains the forgetting factor λ necessary for sequential
forgetting of the past data elements contributions, made when the distance matrix M is not
yet fully learned (change in matrix M made during learning changes also the weight w)

Ad 2)

The change of size and shape of receptive field is made via adaptation of distance matrix M ,
in particular through steepest descent algorithm used for error function J .

1n n dJ
d

α+ = −M M
M

, where α is learning parameter. (12)

Error function J is obtained from weighted mean of square error:

2

1

1 n

i i i
i

J w y y
W =

= −∑ , (13)

where ˆiy is predicted output, n is number of receptive fields and
1

n

i
i

W w
=

=∑

Error function defined this way leads to the overlearning problems. Therefore one can use
leave-one-out cross validation and further introduce penalty term. Final form of the error
function is then:

()

2
2
,2

1 , 1

1

1

n n
i i i

i jTi i ji i i

w y y
J D

W w
γ

= =

−
= +

−
∑ ∑

x Px
 (14)

Ad 3)

Newly created receptive field is added whenever given training pair (),x y does not
activate existing receptive fields for more than genw . The center of newly created receptive
field is set equal to the input of the training fact =c x . Distance matrix M is set into
predefined value and other parameters are set to zero.

The algorithm also contains pruning of excessive receptive fields. If certain receptive
field overlaps another field (training fact activates two receptive fields more than prunew) then
receptive field with higher determinant of distance matrix D is pruned.

3. Numerical simulations

3.1 Simulation details
Neural networks were tested using Matlab implementation (Neural Network Toolbox).

Above mentioned algorithms were used, with Levenberg Marquardt given the best
compromise between computational and memory requirements versus training convergence
speed and precision. Layered networks contained 4 - 30 neurons in hidden layer, networks
with 8 and 22 hidden neurons were selected for further testing. Other training parameters
were set as follows:

transfer function – hidden layer hyperbolic tangent sigmoid
transfer function – output layer linear
training cycles 1000
weights initialization random (-1, 1)

Tab 1. NN parameters

LWR algorithm was implemented in Matlab. The only parameter of the method to set is
the kernel width D (eq. 5), which was set to 100.

RFWR algorithm was implemented in Delphi 7 and initially tested on simple single
variable function approximation task. Results were encouraging and algorithm was further
used for the task at hand. The parameters of the RFWR algorithm were set as shown in Tab. 2:

genw = 0.1

prunew = 0.99

initλ = 0.999

finalλ = 0.9999

deltaλ = 0.99999

initα = 200
γ = 1e-10

Tab.2. RFWR algorithm parameters

3.2 Algorithms comparison
Test results of the simulations for various approximators are shown in Figures 2. - 5.

Data used for training were excluded from the training set, however, they also cover the
complete input space differing in the grid resolution.

Fig. 2. Results for NN 6-8-1 Fig. 3. Results for NN 6-22-1

Fig. 4. Results for LWR Fig. 5. Results for RFWR

The comparison of methods errors and computational requirements is shown in Tab. 3.
MSE stands for Mean Square Error, Max E stands for Maximum error, Don’t know responses
is the number of responses when approximator couldn’t give an answer, Training time gives
the total time required for training, Total parameters is the total value of adjustable

parameters of given approximator (this value influences total memory requirements),
Response parameters is the number of parameters used when response for single input fact is
calculated.

Approximator NN 6-8-1 NN 6-22-1 LWR RFWR
MSE 580 x 10-6 130 x 10-6 819 x 10-6 1.02 x 10-3

Max E [N] 18.49 12.56 48.76 36.01
Don’t know
responses

- - 95
(0.35 % cases)

47
(0.20 % cases)

Training time
[h:min]

2:00 7:10 4:03 3:11

Total parameters 65 177 189000 56784
Response
parameters

65 177 variable variable

Tab. 3. Algorithm comparison

As we can see, the error on test data is higher for LWR and significantly higher for
RFWR than test error produced by neural network approximator. Learning speed is about the
same, however the memory requirements are higher, even for larger neural networks. LWR
algorithm must store all the data points in memory (27000 input vectors). RFWR algorithm
generated 728 receptive fields which gives number of parameters 56784 (each receptive field
has at least center matrix – 6 parameters and D and P matrices of 6x6). Neural networks must
store only synaptic weights (total number of parameters depend on number of hidden
neurons), e.g. network 6-8-1 has 65 parameters only. During the query response the situation
is different for global and local approximators. Neural network must use all its parameters,
while local approximators use only the neighborhood points in LWR case and activated
receptive fields in RFWR case.

4. Conclusions
LWR algorithm main advantage is its extremely simple implementation. Algorithm is

also very fast, the only training it requires is finding the optimal kernel width. The main
drawback is the memory requirement – the algorithm requires keeping all the data points in
memory. Unfortunately this makes the algorithm unusable for large data sets.

First advantage of RFWR algorithm over neural network approach is clear: the RFWR
approximator can give “don’t know” result. When number of receptive fields activated for
given test input is zero the system returns corresponding flag. This is contrary to neural
networks which gives some output for arbitrary input. LWR algorithm can produce the “don’t
know” answer as well, when close neighborhood doesn’t contain sufficient information
(number of close data points).

Furthermore, RFWR algorithm is in principle very robust against partial overtraining
(as any other local approximator). That means that if new training data are presented to the
RFWR after end of the training, it simply learns new data and already trained data remains
intact. This is again contrary to neural network when further training on new data can
destabilize learned global function. LWR algorithm can not be overtrained in principle.

However, looking at the data on this concrete application one can see that neural
networks beat local approximators in almost all aspects. High error values on test data could
be probably improved with better settings of RFWR learning parameters, this work is
currently in progress. LWR results can hardly be improved – distant function change nor
kernel function change will improve the overall results significantly. Advantages of the local
approximators mentioned above are according to us of high value and the algorithms (mainly
RFWR and its successors) is worth of further exploration, but currently the neural network is
the best answer for given task.

Acknowledgement
This work was supported by Czech Ministry of Education through project MSM 262100024
“Research and development of mechatronic systems”.

References
1. Atkeson C.G., Moore A.W., Schaal S.: Locally Weighted Learning, Technical Report,

ATR Human Information Processing Laboratories, Japan, 1996

2. Demuth H., Beale M. Neural Network Toolbox User’s Guide, Mathworks, Inc., 2002

3. Grepl, R.: Dynamic model for stability control of walking robot, Colloquium
Dynamics of Machines 2004, Prague, February 10-11, Czech Republic, 2004

4. Schaal, S. & Atkeson, C. G.. “Receptive Field Weighted Regression.” Technical
Report TR-H-209, ATR Human Information Processing Laboratories, Japan, 1997

