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Summary: A model of turbulent flow in subsonic and transonic regime of a turbine
cascade using two-equation SST turbulence model is described. The suitable nu-
merical method of its solution, based on implicit AUSM discretization, is given and
numerical results for SE 1050 cascade are presented. The influence of turbulence
modeling is discussed.

1. Introduction

We consider a mathematical model of 2D turbulent flow through the SE 1050 turbine cascade.
The implicit AUSM finite volume method with SST turbulence model is described and results
are presented. The influence of turbulent production is investigated as well.

2. Mathematical model

The model shall solve statistically steady 2D turbulent flow of ideal gas. It is based on averaged
Navier-Stokes equations containing mass, momentum, and energy balance. These are obtained
using Reynolds averaging for density and Favre (density-weighted) averaging for velocity and
internal energy [8]. The system of averaged NS equations is then
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whereV is control volume,ni outer unit normal vector of its surface,δij Kronecker delta,t time,
ρ density,ui velocity vector,E total energy (internal+ kinetic of mean flow+ kinetic energy
of fluctuations),H is total enthalpy,p static pressure, for which equation of state for perfect gas
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was used,tij is stress tensor, andqi is heat flux vector. The laminar dynamic viscosity, ratio of
specific heats, and laminar and Prandtl number are

µ = const, γ = 1.4, P r = 0.72. (2)

The turbulent fluctuations are present by Favre averaged Reynolds stress tensorτij, turbulent
kinetic energyk, turbulent heat fluxqt

i , and turbulent heat transportdt
i:

τij = −(ρ + ρ′)u′′i u
′′
j , k =

1

2ρ
τii,

qt
i = (ρ + ρ′)u′′i (cpT )′′, dt

i = tiju′′j − (ρ + ρ′)u′′i u
′′
j u
′′
j /2, (3)

where quote denotes fluctuation with respect to Reynolds average and double quote fluctuation
with respect to Favre average, and overline denotes Reynolds average. These four term need a
model expressed by averaged quantities only.

As the sink of mean kinetic energy is the most important influence of turbulence, the Boussi-
nesq’ hypothesis for Reynolds stress is used

τij = µT 2Sij − 2

3
δijρk, (4)

whereµT is dynamical eddy viscosity. The turbulent heat flux is supposed to have same direc-
tion as averaged one, with magnitude rescaled by turbulent heat conductivity related to eddy
viscosity through the turbulent Prandtl numberPrT

qt
i = qi

Pr

µ

µT

PrT

, P rT = 0.91. (5)

The additional turbulent transportdt
i sometimes expressed as diffusion ofk (see Eq. (6) below)

is neglected in the present study. The model for eddy viscosity is the two-equation SST model
of Menter [6]:

∫

V

∂

∂t

[
ρk
ρω

]
dV +

∮

∂V
uc

[
ρk
ρω

]
dS =

∮

∂V

[
(µ + σkµT ) ∂k

∂xi

(µ + σωµT ) ∂ω
∂xi

]
nidS +

+
∫

V

[
Pk − β∗ρωk

ζρ
µT

Pk − βρω2 + (1− F1)ρσω2
2
ω

∂k
∂xj

∂ω
∂xj

]
dV ,

µT = ρ
a1k

max(a1ω, ΩF2)
, a1 = 0.31, Ω =

√
2Ω̃ijΩ̃ij, Ω̃ij =

1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
,

F1 = tanh(arg4
1), arg1 = min

[
max

( √
k

0.09ωyw

,
500ν

ωy2
w

)
,
4σω2k

Cy2
w

]
,

F2 = tanh(arg2
2), arg2 = max

(
2
√

k

0.09ωyw

,
500ν

ωy2
w

)
, C = max

(
σω2

2

ω

∂k

∂xj

∂ω

∂xj

, 10−20

)
,(6)

whereω is specific dissipation rate and the constants are linear combinationsφ ≡ (β∗, β, ζ, σk,
σω) = F1φ1+(1−F1)φ2, φ1 = (0.09, 0.0750, 0.5532, 0.85, 0.500), φ2 = (0.09, 0.0828, 0.4404,



1.00, 0.856), andyw is the distance to the closest wall. The production is
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The first termµT SS depends on strain rate only, whereas the other two are an effect of com-
pressibility. It is known that the production is overestimated in case of large normal strains (e.g.
in front of leading edge of the blade, or in the shock wave). Therefore an ad hoc modification
due to Kato, Launder, is also considered:
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whereΩ is magnitude of vorticity from (6). In a shear layer, both productions are equivalent,
however the modified one is considerably smaller in the problematic regions mentioned. The
effect of compressibility remains the same.

The inlet flow is subsonic. The boundary conditions have basically same formulation as for
laminar flow in [2]:

• Inlet: given inlet flow angleα1, stagnation pressurep0 and densityρ0, inlet local turbu-
lence intensityTu and inlet eddy viscosityµT1, we set
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whereM is local Mach number,T temperature. The valueµT1 has been taken10µT .

• Wall: The blade surface is adiabatic and smooth. Then
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2
w1), (10)

whereyw1 is a measure comparable with viscous sublayer thickness.

• Outlet: The outlet integral pressure (non-reflecting condition)p2 is prescribed according
to the given outlet isentropic Mach numberM2is:
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3. Numerical solution

The system of equations (1), (6) can be rewritten in the form
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whereF I , F V , Q is inviscid flux, viscous flux and source term respectively. For spatial dis-
cretization we use a cell centered finite volume method with quadrilateral finite volumes (cells)
denoted by indicesi, j and composing a structured grid. The unknownW is considered as
mean value in the finite volume. The integrals in Eq. (12) are approximated using mid-point
rule, leading to

dWi,j

dt
∆Vi,j + R(W )i,j∆Vi,j = 0, R(W )i,j =

1

∆Vi,j

4∑
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where∆Vi,j is area of the cell,∆Si,j,α length of its face.

The inviscid flux cell face value is defined using AUSM (Advection Upstream Splitting
Method) U-splitting [4].
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wherea =
√

γ(p + 2ρk/3)/ρ is effective speed of sound and the normal velocity. The effec-
tive pressurep + 2ρk/3 was denotedp for the sake of readability. The advection sensor has
been originally proposed as Mach number (M-splitting) [3]. Further, splitting based on mass
flux or velocity (U-splitting) has also been published. The present velocity splitting is slightly
more diffusive than the M-splitting. In supersonic case, the splitting reduces to full upwind-
ing, whereas in subsonic region, the interface velocity and pressure are basically the same as
resulting in van Leer flux vector splitting.

TheL, R denotes respectively states on the left or right from the interface considered. Tak-
ing states in the finite volumes adjacent to the interface, first order upwind is obtained. For
higher accuracy needed for turbulent flow computations, the linear extrapolation for conserva-
tive variables with limiter was applied. Considering e.g. the facei + 1/2 between cells(i, j)
and(i + 1, j) we have
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∆− = Wi −Wi−1, ∆ = Wi+1 −Wi, ∆+ = Wi+2 −Wi+1, (15)

whereΨ is the van Leer limiter, switching to first order upwind at occurrence of a local ex-
tremum ofW (adjacent slopes∆ have opposite sign).



The discretization of diffusive flux is central. The approximation of cell face derivatives
needed in diffusive terms uses quadrilateral dual finite volumes constructed over each face of
primary volume – the vertices are located at end of primary face and in centres of adjacent
primary volumes. The mid-point rule quadrature formula is again used, with face value of
velocity defined as average of values in vertices of dual cell [5].

The time discretization uses backward Euler scheme (implicit). First, there is no benefit in
solving the two turbulence model equations coupled with Navier-Stokes. The computationally
favorable approach of keeping the eddy viscosity,k from previous time level in N-S equations,
solving them, and using new velocity in turbulence model equations, has been adopted instead.

Since inviscid as well as viscous and source term are non-linear functions ofW , a lineariza-
tion is needed to obtain linear algebraic system. The Newton linearization with analytically
computed Jacobi matrices is used, however only four finite volumes surrounding volume(i, j)
are included in the implicit part:
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S = { (i, j), (i− 1, j), (i + 1, j), (i, j − 1), (i, j + 1) } (16)

For the linearization of source term in turbulence model a diagonal Jacobi matrix taking into
account negative terms in implicit part, has been chosen.

The discretization described above gives a block five diagonal linear algebraic system. It
is solved iteratively by a relaxation method with direct block tri diagonal system inversion on
selected family of grid lines.

4. Numerical results

Here we consider two regimes of flow through the SE 1050 turbine cascade [7], see Tab. 1. The
inlet turbulence intensity is estimated. The finite volume grid is of H-type, containing approx.
34 000 finite volumes and refined near the blade (giving aspect ratio up to approx. 800). Details
of the grid around leading and trailing edge are shown in Fig. 1. The same grid is used for both
regimes.

The Mach number distribution by SST model for both regimes is shown in Figs. 2, 4. The dif-
ference in Mach number for modified turbulence production is negligible. The results compare
well with measurements as well as laminar results of several different schemes [1].

The distributions of pressure and friction on the blade surface are shown in Figs. 3, 5, where
the results by turbulence model with modified production (8) are denoted mod. SST. The dif-
ference between the two models is marginal here, except for friction around leading edge. The
influence of turbulence production term is best seen on turbulence energy distribution in the
presence of shock wave, Fig. 6. The improvement around leading edge in mod. SST has been
already mentioned. On the other hand the normal strains cause an increase ofk in the shock
wave as well (left sub-figure) and if the production isPKL

k but with neglected influence of com-
pressibility, then just almost nothing happens in the shock wave (middle sub-figure). However
the compressibility further diminishes the production, therefore usingPKL

k from (8) leads to



Tab. 1: Flow regimes
M2is p2/p0 α1 Re2 (chord l.) wall Tu

subsonic: 0.716 0.7106 19.3◦ 1.50 · 106 adiabatic 2 %
transonic: 1.198 0.413 19.3◦ 1.24 · 106 adiabatic 2 %

Tab. 2: Energy loss coefficient
measured SST mod. SST

subsonic: 3.75 % 2.85 % 2.81 %
transonic: 4.70 % 2.67 % 2.70 %

decrease ofk past the shock wave. This result seems unphysical. AlthoughPKL
k might im-

prove the blade surface parameters, the turbulence intensity inside the flow-field can even be
qualitatively wrong.

The energy loss coefficientξ is evaluated according to
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whereM2, p2 are mean values at line located 1/3 of the pitch downstream of trailing edge. The
results and comparison with measurement is given in Tab. 2. Although it should be remarked
this parameter is extremely sensitive to details of evaluation, poor agreement (even opposite
Mach number dependence) with measurements is apparent. The cause is not known at time.
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Fig. 2: Subsonic case: interferometric view [7] (left) and isolines of computed Mach number
(right)
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Fig. 3: Pressure and friction on the blade surface, subsonic case



Fig. 4: Transonic case: interferometric view [7] (left) and isolines of computed Mach number
(right)
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Fig. 5: Pressure and friction on the blade surface, transonic case



Fig. 6: Turbulent kinetic energy for transonic case and different production of turbulence: stan-
dard (left), Kato-Launder with no compressibility effect (middle), and Kato-Launder (right)
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