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Summary: The article deals with analysis of a stress state in the case of 
constructions with a bi-material notch. The eigenvalues λ as well as the stress 
singularity exponents are determined and discussed for three specific geometries 
of a bi-material notch and for varying material combinations. The values λ are 
presented in dependence on the composite parameters α, β in so called Dundurs’ 
parallelograms. A numerical example of critical stress estimation is given at the 
end of the article.  

 
 

1. Introduction 
In practical engineering structures, geometrical and material discontinuities are frequently 
responsible for their final failure. Most of such discontinuities with step change of material 
characteristics can be mathematically modelled as bi-material notches (fig. 1).  

fig. 1  A bi-material notch with the corresponding polar coordinate system 

In the following article a bi-material notch is analysed from the perspective of linear elastic 
fracture mechanics, i.e. the validity of small scale yielding conditions is assumed. It is further 
assumed that the bi-material interface is of a welded type and the notch radius R → 0 (a sharp 
bi-material notch). 
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2. The stress distribution in the vicinity of a bi-material notch 
The expressions for the singular stress distribution referring to plane problems in the vicinity 
of a bi-material notch are introduced in this chapter. The results are based on the solution of 
the Airy stress function. The singular stress components may be written (in polar coordinates 
r, θ, see fig. 1) in the following form: 
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where the real part of values λk is in the interval Re(λk) ∈ (0; 1). The subscript i refers to 
material 1 or 2. The value Hk is the so called generalized stress intensity factor (GSIF) and its 
value results from a numerical solution for a certain construction with a notch and given 
boundary conditions. The coefficients aik, bik, cik, dik for i = 1, 2 are known parameters 
corresponding to λk and depending on the material combination and notch geometry. 
Generally, there exist one or two singularities of type (1) corresponding to one or two 
different values of λk (k = 1 or k = 1, 2).  

Regardless of the number of eigenvalues λ, the combined mode of loading occurs 
inherently in the vicinity of a bi-material notch. The presence of both sine and cosine terms in 
each equation of (1) leads to the fact that the existence of even one eigenvalue λ leads to a  
combination of modes I and II. 

 
 

3. Study of the stress singularity of a bi-material notch 
As mentioned above, the stress components have a singular character for eigenvalues in range  
0 < λ < 1. The values λk have been determined for some basic geometrical configurations as 
shown in fig. 2 and in dependence on Dunders` composite parameters α, β (2), see [1] for 
details.  
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where the shear modulus 
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for the case of plane stress or 3 4i iκ ν= −  for plain strain (i = 1, 2). It is –1 ≤ α ≤ 1, 

–0.5 ≤ β ≤ 0.5 and the special case α = β = 0 corresponds to a homogeneous body. 
 



fig. 2 Ordinary geometrical configurations of bi-material notches (materials M1 and M2) 

It is well known that the eigenvalues depend on the elastic constants of the two media and 
on the wedge angles, but do not depend on the body dimensions or on the external or residual 
stresses: 

1 2 1 1 2 2 1 2( , , , , , ) ( , , , )λ λ ω ω µ ν µ ν λ ω ω α β= =  (3) 
This enables us, for a fixed geometry, i.e. for fixed angles ω1, ω2, to discuss the dependence 
of the eigenvalues λ on the Dundurs` parameters α, β inside the so-called Dundurs` 
parallelogram. For this article, the eigenvalues λ have been numerically determined for the 
following geometries (see fig. 2):  
Rectangular bi-material notch: θ1 = 90°, θ2 = 180° 
interface with a free surface: θ1 = 90°, θ2 = 90° 
symmetrical notch: θ1 = 150°, θ2 = 150°. 

The corresponding Dundurs` parallelograms are shown in fig. 3, fig. 4, fig. 5, and fig. 6  
 

 
fig. 3 Eigenvalues λ1, and λ2 for a rectangular bi-material notch (θ1 = 90°, θ2 = 180°) 

In the case of a rectangular bi-material notch - fig. 2a.), two different eigenvalues occur in 
the majority of material combinations, see fig. 3. In technical practice it is possible to neglect 
one of the two eigenvalues if the value of λ is close to 1 (weak singularity). 
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fig. 4 Eigenvalues λ1 for an interface with a free surface (θ1 = 90°, θ2 = 90°) 

The geometry of  a bi-material notch shown in fig. 2 b.) – an interface with a free surface – 
leads only to one eigenvalue λ1 (see fig. 4). It is expected that the singularity is weak for  most 
of the combinations of two materials. The values of λ are close to 1 > λ > 0.9 in quite a large 
region of values of α, β. The stronger singularity λ about 0.65 is reached only for a 
combination of two materials with markedly different material properties. 

 
fig. 5 Eigenvalues λ1 for a symmetrical notch: θ1 = 150°, θ2 = 150° 



 
fig. 6 Eigenvalues λ2 for a symmetrical notch: θ1 = 150°, θ2 = 150° 

For one of the more general geometries (a geometrically symmetrical notch with θ1 = 150°, 
θ2 = 150°) two eigenvalues λ1 and λ2 are found in almost the whole region of possible 
combinations of the values α and β. The values λ1 and λ2 are separated into two 
parallelograms (fig. 5, and fig. 6) because of their better lucidity but both eigenvalues have to 
be considered generally. Note that – as in the first case – one singularity should be neglected 
in technical practice if it is significantly weaker then the second one. 

 
 

4. Discussion on the stress singularity 
Generally two eigenvalues occur in the case of a bi-material notch. But the stress singularity 
differs from a case of a sharp notch in homogeneous material. Without respect to the number 
of eigenvalues λ, the combined mode of loading occurs inherently in the vicinity of a bi-
material notch. Even one eigenvalue λ leads to a combination of modes I and II, owing to the 
presence of both sine and cosine terms in each equation of (1). Unlike the homogeneous case, 
as far as a bi-material notch is concerned, the two singularities do not correspond to the two 
loading modes, nor is it  possible to separate them as easily as in the homogeneous case. If 
one of the two eigenvalues λ leads to a strong singularity and the other leads to a significantly 
weaker singularity, it is possible to neglect the eigenvalue closer to value 1. But generally the 
fact that there are two singularities – in most cases of bi-material notches – makes it 
unpleasant or even impossible to use the standard methods of life time evaluation. 

For the bi-material notch and also for other general singular stress concentrators a special 
methodology of quantification of crack initiation conditions was suggested in e.g. [2]. The 
procedure is based on a comparison of a quantity describing the behaviour of a crack in a 
homogeneous body with a magnitude with the same physical meaning, but corresponding to a 
bi-material notch. This magnitude has to have a clear physical interpretation and it is chosen 
based on a mechanism of rupture. Because of the fact that the combined mode of loading 
occurs inherently in this case, the strain energy density seems to be a suitable quantity for life 
time estimation [3], [4], [5], [6]. 



 
 
 

5. Numerical example 
Let us demonstrate the critical stress value estimation of a bi-material notch on a simple 
numerical example. The notch geometry is shown in fig. 7, where a = 0.001m, b = 0.002m, 
properties of  material 1: E1 = 3.8×105 MPa, ν1 = 0.26, KIC,1 = 5 MPa.m1/2, material 2: E2 = 
2.1×105 MPa, ν2 = 0.31, KIC,2 = 9.5 MPa.m1/2. It results α = -0.28814 and β = -0.09051, and 
consequently λ = 0.9755 from the specified geometry and material properties.  
 

fig. 7 Model of an evaluated notched body 

The strain energy density (SED) was used as a controlling quantity for the estimation of 
the critical stress of the studied configuration. If the applied stress σappl  reaches the critical 
stress σcrit, a crack is initiated at the notch tip and the growth of the crack can lead to a final 
rupture of the construction. The general methodology of quantification of the critical stress 
estimation was suggested in e.g. [2]. Applying the strain energy density concept to an 
evaluation of the general singular stress concentrator, it is necessary to opt for a dimensional 
parameter r where the value of the strain energy is calculated. It can be taken in dependence 
on rupture mechanism as a plastic zone size, a grain size or another suitable parameter. In this 
case r = 1.2×10-5m. The case of plane stress is considered. Than the trend of strain energy 
density was obtained from numerical solution by ANSYS. The local minimum of SED was 
found in material 1 in angle θm = 30.7°, where the value of strain energy density wmin1 = 
14812 J/m3, see fig. 8.  
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fig. 8 The strain energy density distribution in material 1, θm in minimum of w is the 

assumed angle of crack initiation 

Then the value of the generalized stress intensity factor H can be obtained from the relation 
(4) for SED distribution. It results H = 56.97 MPa.m1-λ. 
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Then comparing the relation (4) (under critical condition and for the material where crack 

initiation is assumed) with those for a crack we get: 
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for the critical value of the generalized stress intensity factor HC = 644.37 MPa.m1-λ. 
Finally the critical stress is obtained as : 
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For the values of H and HC determined previously we get σcrit = 1131 MPa, which is the 
stress that should be applied in order to initiate a crack from the stress concentrator.  

 
 
 
 



 
6. Conclusion 
The relations for the singular stress distribution in the vicinity of a bi-material notch have 
been discussed. The eigenvalues λ describing the stress singularity were evaluated for three 
particular basic geometries of a bi-material notch. Generally there are two eigenvalues λ as 
well as two corresponding singularities. In contrast with the case of a sharp notch in a 
homogeneous body, neither singularity – in the case of a bi-material notch – belongs to one 
loading mode, but each of the singularities leads to a combination of loading modes I and II. 
This fact makes it unpleasant or even impossible to use the standard methods of linear elastic 
fracture mechanics for evaluation of crack initiation. The special method of evaluation of 
rupture initiation was suggested and tested. This method leads to estimation of the critical 
stress necessary for crack initiation in a bi-material notch.  

The numerical example of estimation of the critical stress was presented. Note that if the 
applied stress is less than critical, no crack is initiated in the bi-material notch of specified 
geometry and boundary conditions. 
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