
 
 
 
 

A THERMODYNAMIC MODEL OF SUPERCOOLED WATER  
 
 

J. Hrubý* 
 
 

Summary: A thermodynamic model of liquid and amorphous phases of water 
developed. Water is considered as a mixture of a low density structure (LDS) and 
a high density structure (HDS). When temperature or pressure are decreased, 
increasing number of water molecules participate in the LDS, assumed to 
resemble, on the local scale, the Ih or Ic ices. This explains the anomaly in density 
and heat capacity. Mathematically, the model comprises several algebraic 
relations containing a number of parameters, determined by fitting the measured 
thermodynamic properties of stable, supercooled, and superheated water. The 
model predicts that below approx. 223 K liquid water can exist in two distinct 
phases. At 77 K, the model predicts the densities of the so-called low density 
amorphous ice and high density amorphous ice with a good accuracy. On the 
same basis a model for surface tension of supercooled water was developed, 
reproducing the observed anomaly near 267°K. 

 

1. Introduction 
When cooling water below the freezing temperature (273.16 K) rapidly, it remains liquid for 
some time in a metastable state. Supercooled water is important in a number of natural 
phenomena and technological applications, such as droplet formation near airfoils and in the 
free atmosphere, cryopreservation of food and biological material, geology. In the 
supercooled region, the anomalous properties of water are magnified. Recently, the present 
author developed a thermodynamic model of water, which is further elaborated in this 
contribution. 

It is generally assumed and confirmed indirectly by recent experiments (Wölk & Strey 
2001, Peeters et al. 2002) that the critical clusters of water are liquid-like even far below the 
triple point temperature 273.15 K. Contemporary accurate empirical formulation of 
thermodynamic properties of water (Wagner & Pruß 2002, IAPWS 1996) is conditionally 
valid down to 240 K and relation for surface tension (Vargaftik 1983, IAPWS 1994) is only 
applicable above 273.15 K. Recently we developed a thermodynamic model (Hrubý & Holten 
2004). In the present paper, the outline of the model is given, and the surface thermodynamics 
is further elaborated. The model is based on the hypothesis that liquid water consists of two 
structures. At an instant of time, each water molecule participates either in the low-density 
structure (LDS), or in the high-density structure (HDS). The distribution of molecules 
between the two structures is given by structural fraction x, given as 
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2. Specific volume 

We assume that the mixture is volumetrically ideal. The specific volume is then 

 ( ) ( ) ( )LDS HDS, , (1 ) , ,v p T x x v p T x v p T= − +  , (2) 

where vLDS and vHDS are specific volumes of hypothetical pure structures.  

We assume that LDS is similar on the local scale to the ordinary ice Ih. Therefore, we 
approximate . Röttger et al. (Röttger et al. 1994) give lattice constants a and c for 
ordinary and heavy water measured with synchrotron radiation at normal pressure 
pn=101325 Pa. These constants can be used to compute volume of a unit cell of the Ih-ice 
lattice as 

LDS Ihv ≈ v

1 2
uc 2 3=V . The lattice contains 4 water molecules per unit cell. Therefore, the 

specific volume can be obtained as

a c

( )I uc A  / 4h N M=v V , where the Avogadro constant is 
NA = 6.0221367×1026 kmol-1 and the molecular masses of ordinary and heavy water are, 
respectively, MH2O = 18.015268 kg/kmol (Vienna Standard Mean Ocean Water, VSMOW) 
and MD2O = 20.027508 kg/kmol. The original authors suggested a polynomial fit for the unit 
cell volume. Transformed to the specific volume as explained above, their formula can be 
written as 

 3 4
I ,n 1 2 3

n
hv a a T a T a T 1

n
+= + + + +… , (3) 

where n = 6 for ordinary water and n = 7 for heavy water. Linear and quadratic terms are left 
out to ensure that expansivity and its derivative with respect to temperature vanish at absolute 
zero, as required by theory. Unfortunately, the fit parameters are given with insufficient 
accuracy by the original authors. The least square fit values obtained by the present author are 
given in table. The fitting function (3) does not perform well above 150 K where its 
derivatives become wavy. It is definitely not suitable for extrapolation to higher temperatures 
where it diverges rapidly. Because extrapolation to higher temperatures is important for the 
present application, we chose a different functional form, valid down to 0 K and extrapolable 
to T>273.15: 

 ( ) ( ) ( )1 2 3
12 2

I ,n 4 52 1 1 1hv a a t y ty a t y a t t y a t= + − − + − + + + + 3 y

t

, (4) 

where t T  and 6/ a≡ exp( )y ≡ − . The parameters of relations (3) and (4) are given in Table 1. 

An empirical equation was assumed for the specific volume of the high-density structure 
(HDS) at normal pressure: 

 . (5) 3
HDS,n 1 2/   1 ( / )bv b T b= +

Parameters b1, b2, and b3, are given in Table 2. 



Table 1. Parameters of relations (3) and (4) for the specific volume of ice Ih. The values are 
valid for volume in m3 kg-1 and temperature in K. 

 H2O, Eq. (3)  H2O, Eq. (4) D2O, Eq. (3) D2O, Eq. (4) 
a1 1.07152E-03 1.21779E-03 9.64704E-04 1.23948E-03 
a2 -1.21450E-11 -4.33629E-05 -1.54036E-11 -8.36598E-05 
a3 2.34475E-13 4.38031E-06 3.38321E-13 7.97544E-06 
a4 -1.57309E-15 -1.46258E-04 -2.85927E-15 -2.74776E-04 
a5 4.70663E-18 -9.88480E-06 1.23816E-17 -1.53547E-05 
a6 -5.30435E-21 5.58300E+01 -2.74086E-20 5.83500E+01 
a7   2.46942E-23  
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Figure 1. Volume of the unit cell of the Ih latice of ordinary and heavy water. Open circles 
and crosses: data by Röttger et al. (Röttger et al. 1994) for ordinary and heavy water, 
respectively. Solid lines: Eq. (4). Dashed lines: Eq. (3). Dotted lines: Eq. (3) with original 
(inaccurate) coefficients (Röttger et al. 1994) 

 

The water molecules are free to join LDS or HDS. Therefore, the structural fraction x for 
given pressure and temperature is obtained by minimizing the Gibbs function with respect to 
x. We proposed a simple model 

 ( ) ( ) [ ]LDS 1 2, , ( ) (1 ) ln(1 ) lng p T x g T h p x h x RT x x x x= + + + − − + , (6) 

where  

 ( )( )1 1n n HDS,n LDS,nh h p p v v= + − − . (7) 

The last condition neglects compressibility of the pure structures. 



Conditions for a local minimum of the Gibbs function are 
 x xx0, 0g g= > . (8) 

Subscript “x” denotes a derivative with respective to x at constant p and T; double “xx” 
denotes second derivative. Condition (8) was applied to the Gibbs function (6). The solution 
can be found by iterating equation  

 
( )1 2

1
1 exp 2 /

x
h x h TΦ

Φ

=
+ +  

 , (9) 

starting from x = 0 for Φ =LDA/LDL and x = 1 for Φ =HDA/HDL. 

Parameters b1, b2, b3, h1n, and h2 have been obtained by fitting liquid densities (Wagner & 
Pruß 2002) in the range 240—500 K. Values of the parameters are given in Table 2. Results 
are shown at Figure 2. At pn below 223 K the model predict two liquid phases, the more stable 
(higher g) low-density liquid (LDL) and the high-density liquid (HDL). It is assumed that 
they transform into the low-density amorphous ice (LDA) and high-density amorphous ice 
(HDA), respectively, at glass temperature Tg≈130 K. Interestingly, the experimental densities 
of LDA (cross) and HDA (open circle) at 77 K are predicted accurately. 
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Figure 2. Specific volume of ordinary water at normal pressure. Solid lines: liquid and 
amorphous phases predicted by the present model. Dashed lines: pure low-density and high-
density structures. Star: liquid-liquid (HDL-LDL) spinodal point predicted by the present 
model. Dashed-dotted line: IAPWS-95 (IAPWS 1996), stable solution. Dotted line: unstable 



solution. Solid circles: liquid-vapor spinodal points (IAPWS 1996). Tg: glass transition 
temperature. Inset: structural fraction for the liquid and amorphous phases. 

 

3. Heat capacity at constant pressure 

Following equation (6), heat capacity at constant pressure is given as 

 

2

p, p,LDS

2

ln
1( )
1 12

1

xRT
xc c T

h T
x x

Φ

Φ
Φ

Φ Φ

−
= +

 
+ + − 

. (10) 

The second term gives rise to the anomalous increase of heat capacity of supercooled water 
when temperature is decreased. The first term is related to the function gLDS(T) and we 
assume it in the form 

 
32

LDS LDS
p,LDS 12

2

1
d

s g Tc T T R d
T T d

  ∂ ∂  = = − = +  ∂ ∂    
. (11) 

The coefficients d1, d2, and d3 were obtained by fitting heat capacity obtained from the 
IAPWS-95 formulation (Wagner & Pruß 2002) in high temperature range (276-500K). Below 
the triple point, cp,LDS is almost constant, giving just an offset to the anomalous part. The heat 
capacities are plotted in  and . Figure 3

Figure 3. Constant-pressure heat capacity of liquid phases of water. Below the glass 
temperature Tg, heat capacity is substantially decreased (ignored in this figure). Solid lines: 
prediction of the present model. Dashed line: heat capacity of pure low-density structure 
(equal to that of pure high-density structure). Dash-dotted line: IAPWS-95 formulation 
(IAPWS 1996). 

Figure 4
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Figure 4. Constant-pressure heat capacity of supercooled water at normal pressure. A detail 
showing existing experimental data. 

As shown at Figure 4, the model is in agreement with heat capacity experimental data only 
down to about 245 K. Below this temperature, the anomalous increase is underpredicted. 

 

 

4. Gibbs free energy and pressure of saturated vapor 

Function gLDS(T) was obtained by integrating equation (11) twice:  

 
3

LDS 1 4 5
3 3 2

1( ) ln 1
( 1)

d
Tg T R d T T d T d

d d d

     = − − + − +  +     
. (12) 

The two integration constants c4 and c5 were determined such that the entropy and internal 
energy of liquid water at triple point are equal to zero. This is the reference state choice of the 
IAPWS-95 formulation (Wagner & Pruß 2002). 
 

Table 2. Parameters of relations (5), (6), (12), (17), (18). 

h1n K 493.99 b1 m3kg-1 8.5266e-4 
h2 K -486.47 b2 K 607.66 
d1 1 9.0117 b3 1 4.1571 
d2 K 655.97 PLDS 1 52.9316 
d3 1 7.613 PHDS 1 39.4034 
d4 1 -51.2435 n 1 4.511 
d5 K -2584.94 c1 N m-1 1e-3 
R J kg-1 K-1 461.51805 c2 kg m-3 18015.268 



The pressure of saturated vapor was computed by equating the Gibbs free energy of the 
liquid, either LDL or HDL, and the Gibbs free energy of the vapor 

 sat, vapor sat,( , ) ( ,g p T g p TΦ Φ Φ )= . (13) 

Here the liquid was computed using the present model, represented by equations (6) and (12). 
The Gibbs free energy of the water vapor was computed assuming ideal gas behavior and the 
ideal gas Gibbs free energy at pn given by IAPWS-95 (Wagner & Pruß 2002): 

 sat,
vapor sat, vapor,n

n

( , ) ( ) ln
p

g p T g T RT
p

Φ
Φ = + . (14) 

Saturated vapor pressure can be computed by iterating the following equation, starting 
form sat,p Φ =0: 

 
( ) ( ) n

n t nt sat, n n n nt t Gn Gnt
t

sat, n

ln
exp

pp p v p p v g g RT g g
pp p

RT

Φ Φ Φ Φ Φ

Φ

− + − + − − − +
=  .(15) 

Here the triple-point temperature and pressure are, respectively, Tt= 273.16 K and pt= 
611.655 Pa. Further, nvΦ  and  are specific volumes of the given liquid phase Φ  (LDL or 
HDL below 223 K) at normal pressure and, respectively, at the actual temperature and triple-
point temperature;  and  are Gibbs energies of the given liquid phase Φ  given by Eq. 
(6) at normal pressure and, respectively, the actual temperature and triple-point temperature; 

 and  are Gibbs energies of gaseous phase (vapor) at normal pressure and, 
respectively, the actual temperature and triple-point temperature, computed from the IAPWS-
95 formulation  

ntvΦ

ntΦntΦg g

Gng Gntg

 ( )
8

Gn
1 2 3

4
1 ln ln ln 1 expi i

i

g n n n n
RT

δ τ τ γ τ
=

 = + + + + + − − ∑D D D D D  , (16) 

where the coefficients  and exponents inD iγ
D  are taken from Table 6.1 of Ref. (Wagner & Pruß 

2002), c /T Tτ = , and c/δ ρ ρ=

c

. The critical temperature and density for water are, 
respectively, Tc=647.096 K and ρ =322 kg m-3 (Wagner & Pruß 2002). On the contrary to the 
full IAPWS-95, the ideal gas equation (16) is valid for arbitrarily low temperatures. 

Within the range of validity of the IAPWS-95 formulation (down to about 240 K), the 
vapor pressures computed using Eq. (15) are in a very good agreement with the vapor 
pressures computed from the IAPWS-95.  

 

 

5. Surface tension and adsorption (surface density enrichment) 

Considering liquid water as mixture of “components” LDS and HDS, the surface tension can 
be described with the Macleod-Sugden correlation (Poling et al. 2001): 



 ( ) ( )1 2, / ( ) / ,
n

T x c x c v T xσ =   P . (17)  

Here, c1 and c2 are constants ensuring dimensional consistency, P is the parachor: 

 ( ) ( ) LDS HDS1x x x= − +P P P . (18) 

The pure-component parachors PLDS and PLDS, and the exponent n, were found by fitting 
surface tension data by Hacker (Hacker 1951) for 251—273 K and IAPWS (IAPWS 1994) for 
273—373 K. The results in an extended temperature range are shown at Figure 5. 
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Figure 5. Surface tension of liquid and amorphous phases of water. Solid lines: Eq.(17). Dots: 
Experimental data by Hacker (Hacker 1951). 

The adsorptions (surface excesses) of both components can be defined as 

 , (19) ( )
0

, LDS, HD
ii i z dz iρ ρ

∞
∞ Γ = − = ∫

where LDS (1 ) /x vρ = −  and HDS /x vρ = . If Eq. (2) is valid also in the surface layer, the 
adsorptions (19) are related as  

 . (20) HDS HDS LDS LDS 0i i
i

v v vΓ =Γ +Γ =∑
In the Gibbs adsorption equation we expand the differentials of chemical potentials: 

 . (21) ,xi i i i i i
i i i

d d dx vσ µ µ  
= − Γ = − Γ − Γ  

  
∑ ∑ ∑ dp




,x

Owing to Eq. (20), surface tension is independent of pressure and 

 x i i
i

σ µ= − Γ∑ . (22) 



Further we compute the chemical potentials and their derivatives: 

 . (23) ( ) ( )LDS x HDS x LDS,x xx HDS,x xx, 1 , , 1g x g g x g x g x gµ µ µ µ= − = + − = − = −

Solving equations (20) and (22) we have 
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Figure 6. Adsorption (surface excess), surface layer thickness, and size of critical cluster. 

Figure 6

 

 ( )x HDS LDSx HDS x LDS
LDS HDS LDS HDS

xx xx xx

, ,
v vv v

g v g v g v
σσ σ −

Γ = Γ = − Γ = Γ +Γ = . (24) 

The “total adsorption” Γ, the surface enrichment irrespective to the membership of molecules, 
can be compared (see ) with data deduced from density measurements by Hare and 
Sorensen (Hare & Sorensen 1987). If this data is correct, the present model underestimates the 
surface excess by at least one order of magnitude. Also shown is the surface layer thickness 

/δ ρ= Γ ∆ , (0) ( )ρ ρ ρ∆ ≡ − ∞ HDS LDSρ ρ≈ − = 215.3 kg m-3 (at 273.15 K). The thickness δ can 
be compared with the critical cluster size r* by Wölk and Strey (Wölk & Strey 2001). We see 
that r  is of similar magnitude as δ or even * *r δ� (in comparison with ).  
 
 

6. Conclusions 

A thermodynamic model was developed, enabling a plausible extrapolation of 
thermodynamic properties of water deep into the supercooled region. Below 223 K, the model 
predict existence of a second, denser, liquid phase. This behavior is in accord with hypotheses 
given in literature (Mishima & Stanley 1998). Further, the model predicts that there is a 
surface layer of higher density on water surface. Qualitatively, this prediction is in accord 
with experimental observations (Hare & Sorensen 1987). We conclude that the properties of 
the critical cluster in homogeneous nucleation are probably similar to the properties of the 
surface layer and quite dissimilar to the properties of bulk liquid water. 
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