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CONSTRAINED IDENTIFICATION OF CONSTANTS IN
POLYNOMIAL MODELS OF HYPERELASTIC MATERIALS

F. Fridrich’

Summary: Constant identification is an important step in the structural analysis
of rubber components. Performing the constant identification only from stress
strain data measured in one or two simple deformation modes often gives
physically inadmissible results. In this paper a constrained constant identification
of hyperelastic materials is presented and verified.

1. Introduction

Mathematical models in form of polynomial functions of principal stretches or invariants of
principal stretches are widely used in simulation of hyperelastic materials. Constants of
polynomials are determined from measured stress-strain data in simple deformation modes by
means of least squares method. Higher order polynomials better approximate measured data
than lower order polynomials, but outside the measured strain interval, the higher order
polynomials often lead to physically inadmissible models.

Strictly spoken, a mathematical model should not be used outside the interval of the
independent variable for which the constant identification was carried out. But in the
structural analysis of rubber components such an assumption is difficult to fulfill, because in
an area the calculated strain often exceeds the highest value reached on the specimens used
for the material model constant identification.

In this paper, an approach diminishing the space of material model constants is presented. The
presented approach uses a system of constraints. The system of constraints assures, that in an
interval of strain larger than the interval of measured strain, a calculated mathematical model
gives physically admissible results. The presented approach of the material model constant
identification is verified in MATLAB. In this paper a constrained approach is described and
the results of constrained and unconstrained constant identifications are graphically depicted
and compared.

2. Constitutive models of rubber

Two different approaches are used in characterization of rubber elasticity. The first one called
statistical theory derives rubber elastic behavior from idealized molecular structures of
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vulcanized rubber; the other one called phenomenological theory, treats rubber elasticity from
the point of view of continuum mechanics. In this paper, we will focus on the characterization
of rubber elasticity by means of the phenomenological theory.

According to Rivlin rubber elastic behavior may be described by strain energy function in
form of infinite power series of strain invariants /, and /,. For incompressible materials the
strain energy function is expressed by the following formula

W, 1) = D¢, (1, =3)" (1, =3), (1)

p-q=0
where ¢, are constants, / and I,are invariants of the principal stretch A, I, = A + 4 + 43,
I,=X -2+ -2 +A - 2. The principal stretches 4,, 1,, A, are the principal invariants of
the right Cauchy-Green deformation tensor.

Ogden proposed another well-known strain energy function. Ogden’s function for
incompressible material is given by infinite series

Wudosds)= >, AL (B + )+ A7 (AT + 4% + o)
,q=0 9

A" (4" + 2,0 -6},
where a,  are constants and 4,,4,, 4, are principal invariants of the right Cauchy-Green
deformation tensor.

In structural analysis of rubber components, models with finite number of terms are widely
used. From the equation (1) we can derive the following strain energy functions

W=c,-(I,-3), (3)
W=c, (I -3)+c, (I,-3), (4)

W=cy (I, =3)+cy - (I, =3)+¢, - (I, =3)-(1,-3), (5)

W=cq -(I,=3)+cy, (I, =3)+cy - (I, = 3)°, (6)

W=c,y (I, =3)+cy - (I, =3)+¢,, - (I, =3)- (I, =3) + ¢y - (I, = 3)%, (7)
W=cy (I, =3)+cy - (I, =3)+¢,, - (I, =3)- (I, =3) +yp - (I, = 3)* + ¢5, - (I, = 3)°, (8)
W=cy-(I,=3)+cy-(I,=3) +cy - (1, -3). (9)

The strain energy function given by formula (3) is called the Neo-Hookesn model, the
expression (4) is known as the Mooney-Rivlin model and formula (9) is denoted as the Yeoh
model.



3. Constant identification

Determination of constants of a material model is carried out from the measured stress-strain
data in simple deformation modes such as uniaxial tension, uniaxial compression, simple
shear, pure shear, biaxial tension by means of least squares method. Constants of a material
model are obtained by minimization function

res(cﬁ):Z(al(cij)—&l)z, (10)

where ¢, are sought-after material model constants, o, is the engineering stress determined

from a strain energy function, o, is the engineering stress measured on testing specimens.

The lower order strain energy functions are capable of reasonable accuracy in the fitting of the
measured data in the range of engineering strain ¢ € <— 0.2; + 0.2> , see in Fig. 1. On the other

hand, the higher order polynomials can fit the measured data with high accuracy as it is
shown in Fig. 2, but their prediction of strain energy function outside the range of the
measured data sometimes leads to the decrease of stress upon straining. The fitting of data of
one deformation mode does not necessarily predict rubber behavior in another deformation
mode (James, 1975). In Fig.3 and 4 we can see the examples of inadequate curve fits
performed on data from uniaxial compression and tension. At least two physical reasons
necessarily lead to different stress-strain data obtained from the measurement of different
deformation modes. The first cause of dissimilar rubber behavior in different deformation
modes is rubber anisotropy under straining. The second reason of dissimilarity between the
measured stress-strain data in different deformation modes comes from different temperature
history in the course of vulcanization of specimens.
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Fig. 1 Unconstrained fit of the measured stress-strain data in uniaxial
tension and compression by the lower order polynomial function given by
equation (3)
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Fig. 2 Unconstrained fit of the measured stress-strain data in uniaxial
tension and compression by the higher order polynomial function given by
equation (8)
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Fig. 3 Unconstrained fit of the measured stress-strain data in uniaxial
tension by the higher order polynomial function given by equation (8)



T
x10
T T
—— uac, measured

“““““ uac, model
—— uat, measured

160 vat. model o S » : o . : : ; A N |

2

engineering stress [Pa]

BB 5 ~ : -

15 I i i i 1 I i i i
-1 -0.5 0 05 1 1.5 2 25 3 35 4

engineering strain g [-]

Fig. 4 Unconstrained fit of the measured stress-strain data in uniaxial
compression by the lower order polynomial function given by equation (3)

To overcome some of the above mentioned issues, James (1975), ANSYS (2003) and other
authors recommend performing of the constitutive model constant identification from more
than one deformation mode. MSC Software recommends keeping the constants of a rubber
model positive. Yeoh (1997) found that some of the Ogden model constants could be held
constant for a known rubber material. Twizell (1983) used the Levenberg-Marqurdt non-
linear least squares optimization algorithm for the improvement of fitting accuracy. Yeoh
(1990) proposed a strain energy function to predict filled rubber behavior with a reasonable
accuracy.

Trelour pointed out, that the phenomenological theory of rubber elasticity does not have any
connection to rubber molecular structure. The phenomenological theory is merely a
mathematical framework thus there are no direct restrictions on the values of constitutive
model constants following from theory (Treloar, 1949, 1974).

4. A constrained constant identification procedure

In industrial applications of structural analysis of rubber components we require high
accuracy of the material model and proper behavior in the range of strain we achieve during
computation. We can increase the reliability of a material model by including the measured
data from more than one deformation mode and loading testing specimens to high
deformation. Nevertheless, an increasing number of the measured deformation modes
increases the manufacturing costs and for some deformation modes measurement requires an
expensive equipment and a time consuming and costly procedure. Moreover for all
homogeneous deformation modes, the actual design of testing specimens and the boundary
conditions following from the testing fixtures limit the uniformity of deformation modes. For
a trouble-free structural analysis we need a procedure that is capable of determination of filled
rubber material model from the measured data in uniaxial tension or uniaxial tension and



compression, which is stable in the prescribed range of strain that is larger than the range
measured.

Keeping in mind that constants of a phenomenological model do not have a relation to the
molecular structure of rubber we could think of the constant identification as a purely
mathematical procedure.

From the point of view of mathematical procedure we can formulate the constant
identification as a constrained minimization of the objective function

minimize res(ci].), (11)
¢jj €< clb, cup > ‘
subject to the Drucker criterion.
do;:de; >0, (12)

ce<élb,eub >

where res(c;) is the sum calculated according to equation (10) for all measured deformation
modes, ¢, are sought-after material model constants, c¢/b and cub are the lower and upper

bounds of the constants ¢;, o, &, is the conjugate stress and strain couple and &b and eub

are the lower and upper bounds of strain. The Drucker criterion is imposed on specified
simple deformation modes.

5. Verification of the constrained constant identification

The constrained constant identification formulated in (11) and (12) for hyperelastic material
functions (3) to (9) was verified in MATLAB, utilizing the function fmmincon from MATLAB
Optimization toolbox.

The results of the curve fitting to the measured stress-strain data on the filled natural rubber of
hardness Hd =70 Shore A in uniaxial tension and compression are presented in Fig. 5 and 6.
The calculated constants of the material model given by (7) have values ¢, =845 260,
¢, =-197780, ¢,, =48 288 and c,, =25469. The curves in Fig. 5 show a good agreement

between the stresses calculated by the mathematical model and the measured stress-strain data
in uniaxial tension and compression. The curves depicted in Fig. 6 show that calculated
material model satisfies the Drucker criterion (12) in the prescribed range of engineering
strain & =<—-0.65,4 > .
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Fig. 5 Constrained fit of the measured stress-strain data in uniaxial tension
and compression by the higher order polynomial function given by
equation (7)
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Fig. 6 Stress-strain curves calculated by the mathematical model from Fig. 5
corresponding to uniaxial tension (uat), uniaxial compression (uac), pure shear
(ps) and biaxial tension (bat).



6. Conclusion

In this paper, the same set of stress-strain data measured on filled rubber of hardness
Hd =70 Shore A in uniaxial tension and compression is used for the comparison of the
constrained and unconstrained constant identification.

The curves depicted in Fig. 1 and 2 show either the inaccurate fit of the lower order

polynomials to the measured data, see Fig. 1 or the faulty behavior of the higher order strain
energy functions outside the range of the measured strain, see Fig. 2.

The curves drawn in Fig. 5 and 6 shows that the properly constrained constant identification
applied to a higher order polynomial model leads to a very good fit to the measured data and
the admissible strain energy function behavior outside the range of the measured strain.
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