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Summary: The aim of this paper is to characterize the recent methods grounded 
on damage and fracture mechanics, for the structural analysis of plain concrete 
and reinforced one. Both smeared and also localized numerical fracture 
simulations are contemplated to model the damage regions and the discrete 
cracks generating in loaded concrete elements. In dependence on the dimension of 
these members, eligible constitutive material laws may be postulated, extending 
from linear elasticity or viscoelasticity for large construction, to non-linear 
strain-softening or plasticity for smaller components. Special loading conditions 
are embraced if the use of fracture mechanics is proper ; e.g., shearing, punching 
and anchorage pulling – out.  

 
 
1. Introduction  

Stress-strain constitutive equations depicting softening result in mesh-unobjective issues 
except when associated with a localization criterion or localization limiter. For that reason we 
suppose that stress-strain relations based on continuum damage formulations are always 
connected with such a localization criterion, which, to be particularized, can be selected to be 
a band concept so that we contemplate (x, x, b) models in compliance with their classification 
scheme. We analyze the manner in which one may model the bulk characteristics and the 
behaviour of the material in the fracture zone by continuum mechanics conceptions.  

It is worthy of mention that the restriction we foist on ourselves of considering band models 
entirely is mostly random for the essential interpretations of damage theory may be applied to 
create stress-crack displacement expressions for the crack approaches. Besides, the possibility 
is still open of finding localization criteria more general than those of crack or band 
simulations.  
 
 
2. CDM model parts 

General continuum damage model has three fundamental segments: 
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a. A set of independent internal variables, pk, which in company with the infinitesimal strain 
tensor ε (or the stress tensor σ) are supposed to specify uniquely – the momentary state of 
the solid at a given point.  

The internal variables may stand for a physical quantity or be abstract in nature. They can 
be related to kinematic properties or to structural characteristics. E.g., the vector ec in the 
smeared crack model is meant to represent the internal kinematics of cracks and n,  
the crack direction, is a structural internal variable. It has to be noted that when a set of 
internal variables is selected, any other set, biunivocally related to the first, is rigorously 
equivalent to it and, that is why, can be employed instead of the first. This makes the 
physical interpretation of a given set of internal variables marginally equivocal.  

 
b. An equation set expressing the stress to the strain and to the internal variables: 

σ = S(ε, pk)      (1) 

In up-to-date thermodynamic formulations, Eq. (1) is deduced from a free energy 
function that represents a scalar function to be determined instead of (1). As a rule, Eq. 
(1) is assumed to be linear in the infinitesimal strain tensor 

σ = Λ(pk)ε - Τ(pk)     (2) 

where Λ (pk) is a fourth-order tensorial function being subject solely to internal variables, 
and Τ(pk) is a second-order tensorial function of the internal variables. If T is 0, the zero 
second order tensor, and Λ(pk) = Λ0  is constant, we get a classical elastic characteristics. 
When T changes, and Λ(pk) = Λ0 is constant, a model depicting flow-stress degradation 
but for stiffness degradation is won. If T is 0, the zero second order tensor, and Λ(pk) is 
variable, a model displaying stiffness degradation is obtained that all the time unloads to 
the origin (σ = 0 for ε = 0, and reciprocally). If both Λ(pk) and T(pk) are variable, we win 
a general damage model. This permits us to classify material characteristics (see the 
following table).  

 
Table 1 Analogy between ranking proposed and features of functions Λ(pk) and T(pk) 
 

BEHAVIOUR KIND OF MODEL Λ(pk) T(pk) 

BULK 
a 
b 
c 

Variable 
Variable 

Constant up to peak load 

Variable 
0 
0 

FRACTURE 
ZONE 

a 
b 
c 

Variable 
Variable 
Constant 

Variable 
0 

Variable 
 
 

c. A set of „flow rules“ stipulating the manner in that the internal variables enhance if 
loading progresses. This is a sensitive and fundamental point for prescription of diverse 
flow rules to simulations possessing the same set of internal variables and the same 
composition for the stress strein relation, Eq. (2), will result in very different 



characteristics. Besides, the flow rules have to be consistent with the irreversibility 
condition put by the Second Principle of Thermodynamics.  

The flow rules may be mentioned at many grades of generality: A rather universal 
approach for time-independent behaviour is to apply one or more loading functions 
gained by direct generalization of the classical plasticity theory. In consequence, the 
internal forces qk linked to the internal variables must be selected, and a loading function 
F(qk) stipulated and so the region in which the characteristics are elastic (ie: dpk = 0 for 
any k) is related in the way: 

F (qk) ≤ 0      (3) 

and the associated flow rules have a form:  

dpk = ( F/ q∂ ∂ k) dµ ,           dµ ≥ 0    (4) 

It is evident that a hierarchical arrangement of internal variables is possible so that the 
primary set pk occurring in Eq. (2) is completed by a secondary set of hardening- 
softening parameters going in the loading function (3). Even though this is a rather 
general statement it is not the nothing but one possibility. Multi-yield surface type 
formulations are also possible. We also can create restricted flow rules for especial 
loading occurrences among them the monotonic loading case is the simplest and most of 
use.  

 
 
3. Overview of models 

Some lately developed simulations come after. 

a. Damage model with permanent strains and induced anisotropy  

Realistic and according to the watching of the growth and direction of microcracks, this 
model embraces the anisotropy influence being the damage parameters, under 
consideration the nine independent constituents of an orthotropic fourth-order tensor ΓD.  
Further, a symmetric second order tensor standing for plastic strains εp is defined as an 
internal variable to simulate strain irreversibility.  

The strain reads 

ε = ΓD σ + εp      (5) 

In compliance with Table 1, either a (c, a, b) or a (a, a, b) model is the matter.  

F. Collombet, in conformity with Mazars (1985), restricted the identification of the 
damage variables to the axisymmetric eventuality when solely 4 variables are desired. 
The model supposes that the compressibility is constant whatever the damage grade, and 
damage is formed only in tensile strain states. The flow rules for ΓD and εp are 
independent. 

 
b. Microplane model 

Bazant´s microplane simulation, according to Bazant, Lin & Pijandier (1987), employs a 
continuous distribution of internal variables that are kinematically conjugated. The nature 



of the model is the contemplation that at a microstandard, cracking arises at random 
directions rather than in a parallel array. In the case of normal concrete, the cracks occur 
through the mortar gathering around the aggregates. According to Fig. 1, a macrocrack 
has to run through microplanes oriented accidentally.  

 
Fig. 1 Idealization of concrete structures by means of a microplane distribution 

 

The fundamental issue is that if the microplane strains are kinematically united to the 
total strain, the knowledge of the fracture characteristics of a single microplane will do to 
piece together by integration the behaviour of all the medium.  

In Bazant´s model, the role of the fundamental internal variables play the normal strains 
of the microplanes. These quantities, with arbitrary unit normal n, are denoted being en 
and are associated to a global microplane strain tensor ε* by dint of the equation:  

en = ε*n٠n      (6) 

Next, it is supposed that the stress operating on a microplane is normal to that microplane 
and depends wholly on its normal strain. For monotonic microplane extension the 
pertinent equation may be written down: 

tn = f(en) = f(ε* n٠n)     (7) 

The global stress is won by integration over the unit sphere, which, for isotropic 
distribution of microplanes, yields: 

σ = (3/4π) ∫ tn n ⊗  n dΩ n    (8) 

where dΩn represents the element of solid angle round a unit normal n. 

For the global strain we will get: 

ε = Γσ + ε*      (9) 

where Γ is a constant fourth-order isotropic compliance tensor (not equal to the global 
initial elastic tensor inasmuch as the initial characteristics of the microplanes may be 
elastic).  



The equation set describing the simulation appear rather portentous and, actually, the 
computations demanded for the implementation of the model are fairly troublesome, due 
to the need of performing the surface integral (8). However, the simulation is 
conceptually simple, and, over and above, it is more important, is easy to match into 
experimental data. This is so because the model is being grounded solely on a scalar 
microplane stress-strain relation and on two scalar constants. The tn – en relation can be 
chosen to demonstrate cracking, crushing, degradation of both stiffness and flow stress, 
and secondary internal variables may be used to set up these equations. In this sense, the 
microplane model involves a whole family of simulations displaying anisotropic damage 
in a reasonably natural manner.  

 
c. Mixture model  

The most striking characteristic of Ortiz´s model Ortiz (1987) is the dealing of concrete 
being a two-component mixture, the first constituent as mortar (index 1) and the second 
aggregate (index 2). Thereafter, the macroscopic stress is expressed as the volume 
average of the partial stresses of the two components and, in so much as diffusion is 
supposed to be prevented, the strains of the two components are the same and equal to the 
macroscopic strain in the following manner 

σ = α1σ1 + α2σ2     (10) 

ε1 = ε2 = ε3      (11) 

where σ1  and σ2 represent the partial stresses of the mortar and aggregates, and α1 and α2 
are their volume fractions. The simulation is supplemented with the models for mortar 
and aggregate characteristics. In the simplest version, two primary internal variables were 
introduced. One is a fourth order tensor Γd, rendering the compliance change and 
possessing the sense of a fourth order tensorial damage, and the other stands for a plastic 
second order strain tensor .p

1ε  The partial stress-partial strain relationship may be 
expressed in the form: 
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where <σ1>+  and  <σ1>-  mean again the positive and negative components of the partial 
stress tensor, ● denotes inner product of tensors and ⊗  tensorial product, α and c are 
constants and the multiplier µ develops in compliance with the expressions 
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dµ = 0           otherwise.       



Function t (µ) represents the hardening-softening dependence that may be specified from 
the uniaxial tension test. The aggregate is simulated as an elastoplastic material for that 
the Drucker-Prager loading criterion and a non-associated plastic flow rule hold which 
form the simplest model being close at hand for a granular material. The final simulation 
after using the mixture rules is of type (a, a, b). And what is more, the model shows 
hysteretic behaviour in unloading-reloading cycles due to the coupling of mortar and 
aggregate characteristics.  

Two following models are included in the publication “Computational Fracture 
Mechanics in Concrete Technology” (1999) 

 
d. Gradient damage simulation 

It is indicated that damage mechanics offers a suitable framework for smeared crack 
models. On top of that, the standard damage is enhanced by spatial and/or temporal rate 
dependent gradients. Physical reasons, eg the inherent rate dependence occurring in 
course of an impact, motivate the foregoing improvement.  

The performance of the model is demonstrated by numerical simulations on notched 
specimens with curved crack paths.  

Results of the stated analysis are given in Figs 2 - 4 for a single-edge notched beam 
subject to an antisymmetric four-point loading. 

 
 

 
 

Fig. 2 Test set up of single-edge notched 
 
 
 
 
 



 
Fig. 3 Damage evolution in single-edge notched beam 

 

 
Fig. 4 Final damage distribution for modified von Mises equivalent strain definition and 

experimental crack pattern 
 
e. Modelling geometrically oriented damage  

Microstructural degradation and continuum damage mechanics for describing the elastic 
property alterations are the matter. Concurrently, an internal length is usually 
incorporated in the model to avoid the difficulties connected with strain-softening. To 
generalize a problem formulation, elastoplatic damage and crack closure effects are used. 
As in the majority of cases damage is not isotropic though rather geometrically directed, 
to compare the scalar damage model with a tensorial damage one, it is purposeful to take 
the induced anisotropy into consideration. In so doing, the analyses on bending and 
shearing geometries are performed, and these instances foreshadow circumstances when 
an isotropic attitude to the characterization of damage is adequate.  

Outcomes of the investigation aforementioned are shown in Fig. 5. 
 



 
Fig. 5 Double-edge notched specimen: geometry and loads 

 
 

 
Fig. 6 Double-edge notched specimen: tensile load vs. vertical displacement for Ps = 10 kN 

 
 

4. Conclusion 
Continuum damage simulations provide a framework for characterizing the degradation of the 
elastic qualities of concrete owing to microcracking and crushing. Concurrently, this theory 
offers a description of macrocracking that issues from the localization of strain and damage. 
Though the theory is markedly phenomenological, a method is presented which yields 



rational bases for selecting the type of damage variable to be applied in the constitutive 
response. Two underlying models have been used: the classical scalar damage simulation and 
a model that embraces damage induced anisotropy. 
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