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Summary: For the establishment of new more rigorous models of concrete structu-
res it is usually necessary to take development of cracks into account. If strain
softening is considered in the smeared crack model, the results of numerical solu-
tions are influenced by mesh size of the finite element model. The paper is focused
on the application of some methods, usually called localization limiters, on beams
in bending and plates. This paper presents mesh adjusted softening model and
nonlocal continuum model for plasticity and damage.

1. Introduction

The post peak modelling of concrete behaviour is at this time a very usual phenomenon
in the analysis of reinforced concrete structures by finite element methods. Different models
with discrete or smeared cracks are used. The smeared crack model, when strain softening is
considered, often leads to instability of solutions and the results are dependent on the finite
element mesh size. The failure is concentrated to the most stressed element. If the size of this
element decreases to zero, the total dissipated energy of damage is decreased to zero too. If
strain softening is to be considered, this circumstance must be treated somehow.

Two approaches are presented in this paper, both of which reduce the shortcomings
introduced above. Both methods are well-known from analysis of simpler problems, their
application on beams in bending will be shown here and extension of one of these approaches
to plates will be outlined.

2. Mesh adjusted softening modulus

The mesh adjusted modulus is known as crack band model in 2D problems. The purpose
of this model is to ensure, for different sizes of finite elements, the same amount of dissipated
energy if material is damaged. The softening branch of the stress-strain diagram is modified
according to element size in the direction orthogonal to the crack.

The basic condition is that the energy which is necessary for crack opening is constant.
This process reduces the dependency of load-displacement diagram and dissipated energy
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on finite element mesh. The damage remains localized into one element, respectively into
a band of elements, the width of which is related to size of one element. A realistic load-
displacement diagram is achieved, but the strain profile in the vicinity of failure remains
unrealistic.

3. Nonlocal continuum

In contrast to the previously discussed model, the goal of the nonlocal continuum model is
to spread damage into certain region, whose size is given by characteristic length, basically
a material constant. One of the variables in constitutive relations is considered as nonlocal,
i.e. it is related to values of this variable in the vicinity of examined point. If an appropriate
variable is considered as nonlocal, the model ensures:

• the dissipation of energy does not tend to zero, if the size of finite element decreases,
• the load-displacement diagram is realistic and not influenced by mesh size,
• the strains in the vicinity of failure are realistic,
• the size of the damaged region is correct,
• elastic solution of structure is not affected by nonlocal averaging.

In 1D case it is possible to express nonlocal averaging in the following way. The dependency
of nonlocal variable on local variable decreases with increasing distance r of another point
(co-ordinate ξ) from examined point (co-ordinate x)

r = |x − ξ|. (1)

This relation is expressed by the function

α0(r) =
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which is bell-shaped. The variable R is called interaction radius and is related to characteristic
length of material. It is possible to normalize the equation (2) over its definition domain

α(x, ξ) =
α0(x, ξ)∫

L
α0(x, ζ)dζ

. (3)

Because definition domain of function α0 is limited by R, the integration length is limited
to 〈x − R, x + R〉. The equation (3) normalizes α0 also near the structure boundaries. The
nonlocal variable v can be obtained from local v by the relation

v(x, ξ) =
∫
L

α(x, ξ)v(ξ)dξ. (4)

Application of nonlocal continuum model to two types of constitutive relations - plasticity
and damage model - are presented in the paper. The constitutive relation for plasticity can
be expressed as

σ = E(ε − εpl), (5)

were σ is stress, ε is total strain, εpl is plastic strain and E is Young’s modulus. The process
of application of nonlocal averaging is following:



1. computation of local increment of plastic deformation δεpl the usual way,
2. computation of nonlocal increment of plastic deformation δεpl from local by nonlocal
averaging,

3. computation of nonlocal plastic deformation εpl from increments δεpl ,
4. computation of stresses from nonlocal plastic deformation and local total deformation.
by using eq. (5).

The constitutive relation for damage can be expressed with

σ = (1− ω)Eε, (6)

where ω is a parameter of damage which increases from zero to one with growing damage.
The process of application of nonlocal averaging is following:

1. computation of local deformation ε the usual way,
2. computation of nonlocal deformation ε from local ε by nonlocal averaging,
3. computation of damage parameter ω from nonlocal deformation, ε
4. computation of stresses from nonlocal stiffness and local deformation by using eq. (6).

When nonlocal continuum model is practically implemented the integrals in (3) a (4) are
calculated numerically, e.g. using integration points of stiffness matrix of each element. The
values of function α are the weight coefficients, which are not changed through the iterations
and it is possible to compute them, for every two points, before the actual solution. With
regard to the certain dependencies of deformations over the cross-section, which is introduced
by Navier hypothesis, the averaging over height is omitted.

Figure 1: Beam deflection – mesh Figure 2: Beam deflection – nonlocal
dependent softening modulus continuum

4. Plates

Because the nonlocal model of plates is under development at this time, this paper will only
outline some differences from the beam model and will present local model with some results.

Firstly, the integration in (3),(4) runs over a 2D area. The definition domain of function (2)
is a circle with radius R, and it is also the integration area. If the direction of cracks is



not respected in averaging, the weight coefficients α are not changed through the iterations
and it is possible to compute them before the solution too. Considering a linear relation
of deformation through the height of cross-section the averaging of total deformation can run
through the deformation of cross-section. For other nonlocal variables it has to run through
variables of layers.

A finite element model of reinforced concrete plate was made. The model is formed by
plain-plate eight-node isoparametric elements. The layered concept is used for assembling
of stiffness matrix and integration of internal forces over cross-section. The model includes
plasticity of steel, plasticity of concrete with Chen yield function and multiply hardening
in the element. The cracks are implemented by fixed crack model. Residual stiffness of crack
in normal direction by softening of stress-strain diagram in tension is considered. The details
of this model can be found in lit. (Brdečko, 2001).

Figure 3: Beam deflection – plasticity and damage of nonlocal continuum

5. Results and conclusions

The behaviour of localization limiters is demonstrated on the examples of the cantilever beam
with length of 1m, which is loaded by increasing the lateral displacement at the end. The
figures 1-3 display the load-displacement diagram of unsupported end of beam for different
numbers of elements and different localization limiters.

Fig. 1 brings up the results for the model with mesh adjusted softening modulus. In con-
trast with beam in tension, in case of bending the shape of load-displacement diagram par-
tially depends on the size of elements, but it is more realistic then with a local solution.
The total dissipated energy is approximately constant. The model is usable even for large
elements.

However, for nonlocal continuum model, it is necessary that the elements are smaller than
damaged zone. Fig. 2 shows results for interaction radius 0.1m. From certain (small enough)
size of elements the load-displacement diagram is independent on the mesh. The strains are
realistic.

Fig. 3 compares application on two types of constitutive relations. The interaction ra-
dius is set to 0.2m. The presented damage model shows better behaviour in terms of load-
displacement diagram, stability of solution and complete unloading.



The behaviour of local plate model is displayed on the square plate simply supported
in corners. The plate is loaded by growing force in centre of plate. The plate is reinforced
in two directions by two surfaces. The load-displacement diagram is compared with results
of experiment from lit. (Duddeck at al., 1978).

Figure 4: Deflection of plate for different Figure 5: Deflection of plate for different
mesh size softening modulus

Fig. 4 shows the results for different element sizes and fig. 5 for different softening bran-
ches of stress-strain diagram, which is represented by parameter c = −Ez/E0, where E0 is
initial modulus and Ez is modulus of softening branch. It can be seen that if reinforcement
is considered, the influence of mesh size and strain softening is smaller and it appears before
the peak of load-displacement diagram.
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