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Summary: Hyperelastic material model based on the logarithmic description
is implemented in the finite element code. Procedure for the calculation of
all the necessary quantities at the Gauss integration points is described in de-
tails. The second-rank update BFGS solver is used to process the governing
equilibrium equations. The solution algorithm is then combined with the pre-
discretization contact search method in order to include contact boundary con-
ditions. As an example, numerical simulation of the compression test of a
rubber cylindrical specimen is presented.

1. Introduction

For the verification of the hyperelastic constitutive model the simulations of exper-
imens have to be compared with measured data. The experimental data from simple
homogeneous load modes can be compared with analytical solutions, but more complex
deformations must be solved with approximate numerical methods. A very popular nu-
merical method for solving nonlinear mechanical problems is the finite element method
(FEM).

Proposed constitutive model was based on the linear relation between the logarithmic
strain tensor and its conjugate stress tensor. Details about this constitutive model can
be found in [Poživilová 2002] or [Poživilová and Plešek 2002].

The main emphasis in this text is given to the implementation of the constitutive
relation to the existing FEM solver and the choice of the numerical method. For the
nonlinear problems, the governing equations are given, together with the algorithm of
the computation of the stress in the Gauss integration point for proposed constitutive
model. The advantages of the use of the second rank update BFGS solver for solution of
the nonlinear system of equations are discussed. In the end of this text, the numerical
simulation of the compression test of the rubber cylinder is presented.
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2. Governing equations

Numerical solution of problems of the rubber elasticity requires adequate dealing with
not only material, but also geometrical nonlinearities. Identically to the linear problems,
the governing equations covering the nonlinear problems are obtained from the principle
of virtual displacement. This principle states that for any compatible small virtual dis-
placement imposed on the body in its state of equilibrium, the total internal virtual work
is equal to the total external virtual work.

Static equilibrium is described by the equation of equilibrium

div (σ) + b = 0 in tV with the boundary condition σn = t on tΓS (1)

σ is the Cauchy stress tensor, b is the vector of the body forces and t are tractions on
the surface.

The weak form of this equation∫
tV

δuT [div (σ) + b] dV = 0 (2)

is called the principle of virtual displacement. δ denotes the variation of the quantity
and δu is the virtual displacement. Expanding the first term by the product rule and
then rearranging by means of the Greens’s theorem we obtain the principle of virtual
displacement in the form∫

tV

δε : σ dV −
∫
tV

δuTb dV −
∫

tΓS

δuTt dS = 0 (3)

where δε denotes the variation of the strain tensor δε = ∂(δu)
∂ tx

. Considering large strains,
the difference between the original and current configuration cannot be neglected and all
the integrations must be performed over the deformed size of volume of the body.

In the finite element method, the body is divided in the system of elements, which are all
in equilibrium. For the assemblage of finite elements we rewrite the equilibrium equation
(3) as a sum of integration over volumes and areas of all finite elements. The continuum
displacement field u is replaced in every element by its approximation u(e) = H(e)û(e),
where H(e) are so called shape functions dependent upon the employed type of element
and û(e) is the vector of the displacement components at all nodal points of the e-th
element. This does not differs from the spatial discretisation of the principle of virtual
power for solution of linear problems. The strain vector ε(e) is determined by the kinematic
relation ε(e) = tB(e)û(e). The strain-displacement matrix tB(e) is obtained by appropriate
differentiating of components of H(e) in respect to the current coordinates.

To enable the direct calculation of the finite element matrices, the isoparametric
elements were used. At every element the element coordinates x(e) are expressed in
the form of the interpolations of the nodal coordinates x̂(e) according to the relation
x(e) = H(e)Tx̂(e). Both matrices H(e) and tB(e) are expressed in non-dimensional coordi-
nates r(e). The operator relating the non-dimensional coordinate derivatives to the global
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coordinates derivatives is called Jacobian and is defined as J(e) = ∂ tx(e)

∂ r(e) . Accepting that
the equation (3) must holds for an arbitrary virtual displacement δu we obtain the system
of equation governing the nonlinear mechanical problem

k∑
e=1

∫
tV (e)

detJ(e) tB(e)T~σ dr
(e)
1 dr

(e)
2 dr

(e)
3 =

k∑
e=1

∫
tV (e)

detJ(e) H(e)Tb(e) dr
(e)
1 dr

(e)
2 dr

(e)
3 +

+
k∑

e=1

∫
tΓ1,tΓ2...

detJ
(e)
S H(e) Tt(e) dS(r)(e) +

k∑
e=1

f (e) (4)

where ~σ denotes the stress vector built from the elements of Cauchy stress tensor. The
left side of the equation is called internal force vector and the right side of the equation
is called external force vector.

3. Solution of nonlinear equations

Once the nonlinear system of equations (4) is established, it is necessary to find its
solution. Its character is inherently nonlinear and the nonlinear solver must be used. The
solution can be divided into three steps

1. Evaluate the internal forces vector fint for the given approximation to the solution
ûn. The integration is carried over the current domain tV .

2. Evaluate the residual vector gn as the difference between the internal and external
equivalent forces. The residual vector gn is also known as the gradient of the total
potential energy due to displacements ûn.

3. On the basis of information drawn form the last few iterations set a new approxi-
mation ûn+1 and repeat the cycle until the convergence is reached.

The most important part of the computation of internal nodal forces is the evaluation
of the stress ~σ in every Gauss integration point. The stress is given by the particular con-
stitutive equations. In our problems we use for the description of constitutive behaviour
of rubber the logarithmic strain tensor for the description of displacement. The relation
between the logarithmic strain and stress tensor conjugate with this strain tensor was
linear.

The procedure for the computation of the internal nodal forces

f
(e)
int =

∫
tV (e)

detJ(e) tB(e)T~σ dr
(e)
1 dr

(e)
2 dr

(e)
3 (5)

for the proposed constitutive model is given in Box 1.

In the equilibrium state the internal force vector equals to the external force vector. The
difference between the internal and external equivalent forces for the n-th approximation
of the solution un is called a residual vector

g(un) = fint − fext (6)

Poživilová, A. 3



Internal nodal force computation for element

• fint = 0

• for all quadrature points of the e-th element

– compute strain-displacement matrix 0B
(e)
n

– compute displacement gradient Hn

– compute deformation gradient Fn = I + Hn

– compute determinant of the deformation tensor Jn = detFn

– compute Cauchy-Green deformation tensor Cn = FT
nFn

– spectral decomposition Cn =
∑3

A=1 λ2
A n

0N(A) 0N(A) T

– logarithmic strain tensor lnUn =
∑3

A=1 ln λA n
0N(A) 0N(A) T

– inverse right stretch tensor U−1
n =

∑3
A=1 λ−1

A n
0N(A) 0N(A) T

– compute rotation tensor Rn = FnU
−1
n

– compute logarithmic stress Tn = 2µ lnUn + Λ ln Jn I

– compute Cauchy stress tensor σn = J−1
n RnTnR

T
n

– compute strain-displacement matrix tB
(e)
n

– fint ← fint + α tB
(e)T
n σn (where α is the weighting factor for given

Gauss point)

BOX 1:
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The nonlinear equation system
g = 0 (7)

can be solved by iteration. The most frequently used and the most robust method for
the solution of (7) is the Newton-Raphson iteration method. The iteration schemes for
Newton-Raphson solution method is based on a Taylor series expansion of the residual
vector in the neighbourhood of the point un

g = g(un) +
∂g

∂u

∣∣∣∣
un

(u− un) + higher-order terms = 0 (8)

Neglecting the higher-order terms and denoting the current tangent stiffness matrix

Kn =
∂g

∂u

∣∣∣∣
un

(9)

we can calculate an increment in the displacement ∆un+1 = un+1 − un from the relation

Kn∆un+1 = −g(un) (10)

A characteristic of the Newton-Raphson iteration is that the new tangent stiffness matrix
is calculated in each iteration. However this method is very expensive for large-order
systems, the solution cost can be reduced significantly by employing the quasi-Newton
methods based on Newton-Raphson method without the explicit re-formation of the tan-
gent stiffness matrix. Instead of calculating the tangent stiffness Kn we can use the initial
stiffness matrix and update only the residual vector in every iteration. This method is
called a initial stress method and may converge very slowly or even diverge. Among the
quasi-Newton methods available, the BFGS method appears to be most effective, because
does not destroy the banded nature of the finite element stiffness matrix.

BFGS

The BFGS method (called after Broyden, Fletcher, Goldfarb and Shanno) involve
updating the coefficient matrix to provide a secant approximation to the matrix. The
algorithm is described in [Matthies and Strang 1979] or in [Bathe 1996]. For a given
approximation un of the solution u, the algorithm will choose a search direction dn, in
which the line search is applied to find a better approximation.

The important point is the choice the direction dn. The idea of Davidon is to update the
stiffness matrix K in a simple way after each iteration, rather than to recompute it entirely
(full Newton-Raphson method) or leave it unchanged (initial stress method). The update
formula of the stiffness matrix for the BFGS method must satisfy four requirements:

1. The new matrix Kn should satisfy the quasi-Newton equation

Knδn = γn (11)

where δn denotes a displacement increment

δn = un − un−1 (12)
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and γn is the increment of the residual force vector

γn = gn − gn−1 (13)

2. If Kn−1 is symmetric, then the new Kn should be also symmetric. This is automat-
ically fulfilled if the residual g is a gradient of some scalar potential.

3. If Kn−1 is positive definite, then the new Kn should also be positive definite.

4. The new search direction dn = K−1
n gn should be inexpensive to compute.

The last condition is the essential point. It is accomplished by requiring that Kn should
differ from Kn−1 only by a matrix of very low rank. Our favorite, which satisfies also the
conditions 1–3, is a correction of rank two. Conveniently this update is written in terms
of K−1

n−1 rather than Kn−1. This inverse also differs from its predecessor by a matrix of
rank 2, and the correction can be put into product form

K−1
n = AT

nK−1
n−1An (14)

with
An = I + vnw

T
n (15)

We can see immediately that the requirements of symmetry and positive definiteness are
achieved.

Vectors vn and wn are set to satisfy the quasi-Newton equation (11). Thus

vn = −

√
δT

nγn

δT
nKn−1δn

Kn−1δn − γn

wn =
δn

δT
nγn

(16)

To avoid the numerically dangerous updates we have to evaluate the condition number
c of the updating matrix An. It is defined as an absolute value of the ratio of the
maximum and minimum eigenvalues. The eigenvalues of matrix An are (in ascending
order) λ1 = λ2 = . . . = λN−1 = 1 and λN = 1 + wT

nvn, where N is an order of the matrix
An. Then

c =

∣∣∣∣λN

λ1

∣∣∣∣ =
∣∣1 + wT

nvn

∣∣ (17)

Substitution of (16) into (17) we obtain the relation from which the condition number is
calculated in the FEM program

c =

√
β0 G(0)

G(0)−G(β0)
(18)

For G(β)→ G(0) there is no reduction in residual, c→∞, which means that the structure
is unstable and updates to the secant matrix Kn should be avoided. The critical value of
c is taken as 5.
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BFGS iteration schemes

• initialization of the iteration process

– initial displacements u0 = 0

– initial tangent stiffness K0, usually the elastic matrix K0 = Ke

– initial residual g0 is prescribed right hand side g0 = −fext

– calculate K−1
0 from the triangular factorization of K0

– find search directions d0 from d0 = −K−1
0 g0

– define G(0) = dT
0 g0

– line search in the direction d0: find the optimum value of β0 mini-
mizing the scalar function G(β0) = dT

0 g(u0 − β0 d0)

– evaluate condition number c =
√

β0G(0)
G(0)−G(β0)

. If c > 5 the update is

not performed

– new approximation of solution u1 = u0 − β0 d0

– new residual g1 = g(u1)

• do for n = 1, 2, 3 . . . while prescribed accuracy is not achieved

– δn = un − un−1

– γn = gn − gn−1

– vn = −
√

δT

nγn

δT

nKn−1δn

Kn−1δn − γn

– wn = δn

δT

nγn

– update of the stiffness matrix K−1
n = (I + wnv

T
n )K−1

n−1(I + vnw
T
n )

– search direction dn = K−1
n gn

– line search in the direction of dn: find the optimum value of βn

minimizing the scalar function G(βn) = dT
ngn

– calculate condition number c =
√

βnG(0)
G(0)−G(βn)

. If c > 5 the update is

not performed

– new approximation of the solution un+1 = un − βn dn

– new residual gn+1 = g(un+1)

– check of convergence - if ‖un+1 − un‖ < UTOL ‖un+1‖ and
‖gn+1‖ < RTOL‖g0‖ then quit

• end of the loop

BOX 2:
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Figure 1: FEM model of the quarter of the cross-section of the cylindrical specimen used
in compression test.

The algorithm of the BFGS method is fully described in the Box 2.

The advantage of the algorithm is that the number of auxiliary vectors vn, wn can be
kept reasonably small, say 10-15. Than the vectors can be abandoned and the iterations
recommenced from the new point un but with the same initial matrix K0.

4. Numerical example

The described algorithm was used for numerical simulations of the compression test
of the rubber cylinder. During the deformation, the stress field is not uniaxial - even if
heads of the testing machine are greased, they prevent extension of the diameter of the
cylindrical specimen on the pressure heads. This is the reason why the experimental data
cannot be compared with the analytical solution but the numerical simulation has to be
carried out.

The compression of the cylindrical specimen is from a nature an axisymmetric task,
which is even symmetric to the plane parting the cylinder to two of half length. Thus
the FEM task is also axisymmetric, the finite element model is shown in the Fig. 1. The
model consist of 384 eight nodes axisymmetric elements. The quadratic elements are used
because of the higher accuracy obtained with lower computational costs. The pressure
head of the testing machine is modelled by one axisymmetric element.

Adequate boundary conditions agreeing with the experimental conditions was pre-
scribed. All nodes in the plane of symmetry were prevented moving in the axial direction.
Because of the friction between the specimen and the pressure head of the testing ma-
chine, the radial displacements of the nodes of the specimen in the pressed plane were
prescribed to be zero. The displacement loading was prescribed in the nodes on the
pressed plane, namely in every node was prescribed in the axial direction a spring with
stiffness 1011 Nm−1 and the additional force which cause the required axial displacement.
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The stiffness of the spring is five orders higher than the stiffness of the material, which
is sufficient and at the same time it avoids the numerical difficulties produced by two
different materials with too different stiffness.

To avoid the rolling of the rubber material over the edge of the cylinder, one element
representing the pressure head was added to the FEM model. Then it is possible to
prescribe the contact between the pressure head and the wall of the cylindrical specimen.
In all nodes belonging to the element representing pressure head was prescribed identical
displacement load like in the nodes in the pressed cross-section of the cylinder.

For the modelling of constitutive relations the logarithmic formulation was used. The
only material parameter which represents the shear modulus is µ. Its size for the soft
rubber used for compression test and tension test was derived from the tension charac-
teristic and it is µ = 1.4 MPa. For the second material used to the compression test II
and shear test was its size determined from the measured shear characteristic and it is
µ = 1.12 MPa. Because the rubber material is nearly incompressible, the Poisson’s ratio
used in computations was set ν = 0.49.

If the specimen is compressed to approximately 70% of it original length, the lateral
surface of the cylindrical wall of the specimen and the surface of the element corresponding
to the pressure interface together and the contact computations must be carried out.

Figure 2: Deformed mesh for 60% compression.

Figure 3: Von Mises stress on the deformed mesh, 60% compression.
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The deformed mesh obtained from the numerical simulation is plotted in Fig. 2. The
distribution of the Von Mises stress on the deformed specimen for the compression to the
40% of its original length is given in the Fig. 3. The importance of the prescription of con-
tact between the lateral surface of the cylindrical specimen and the element representing
the pressure head is obvious.

With the mesh used for the computations, it is not possible to reach much larger
compressions that it is shown in Fig. 2. The reason is that the distortion of elements in
the upper part of the model is too big, the ratio between the two sides of quadrilateral
elements is too high.
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