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SELF-EXCITED TWO-MASS SYSTEM WITH SOFT IMPACTS

A. Tondl∗, L. Kocanda∗

Summary: To a basic one-mass self-excited system a tuned absorber is attached
the motion of which is influenced by soft impacts. The self-excitation is considered
as of van der Pol type one. The stops are symmetrically situated to the absorber
mass equilibrium position. The results of numerical simulation are presented in
diagrams showing the measure of extreme deflection of the basic system mass to
the amplitude of the basic system vibration without absorber in dependence on the
tuning coefficient of the absorber. The following effects are investigated: the ratio
of the absorber mass to the basic system mass, the distance of the stops, absorber
motion damping, and damping in the stops. Generally the stops do not represent a
favourable effect.
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1. Introduction
Self-excited vibration induced due to different reasons, e.g. due to flow, relative friction etc.,
can represent a danger to some structures, machines and devices. Different means are used for
suppressing these vibrations. One of the means is the tuned absorber that is attached to the
basic self-excited system. For the basic analysis a two-mass model can be used to investigate
different effects and to optimise the absorber action. The case of the tuned absorber consisting
of an absorber mass, a spring, and a damper where the motion of the absorber mass is not

influenced by stops has been analysed by several
researchers (e.g. (Tondl, 1991) and the references
mentioned therein) and its basic theory can be
considered as closed.

This contribution deals also with a two-mass
model but this one differs from the above
mentioned in (Tondl, 1991) in that the motion of
the absorber mass is influenced by soft stops
situated symmetrically to the absorber mass
equilibrium position (see Fig.1).

Fig. 1. Oscillator scheme
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2. Differential equations of motion

The basic self-excited system consists of mass 0m  on a spring having stiffness 0k , the
deflection being denoted as 2y . The self-excitation of Van der Pol type is assumed. The
absorber subsystem consists of absorber mass m on a spring having stiffness 1k , the absolute
deflection is denoted as 1y . The identical stops are situated in distance r from the equilibrium
position of the absorber mass, and, similarly as in (Tondl, Peterka 2002), are characterised by
additional stiffness 2k . Linear viscous damping of the absorber mass motion is considered;
the damping in the stops (as in (Tondl, Peterka 2002)) is proportional to the stops
deformation, i.e. characterised by the term
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Then the system is governed by the following differential equations:
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and 1b , 2b  are positive parameters.

To transform these equations into dimensionless form new coordinates 0/Yyx ss =  (s = 1, 2)
are introduced where
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and the time transformation
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is used.

0Y  is the approximate vibration amplitude of the basic system without absorber (see e.g.
Tondl, 1991). In this way the following equations are obtained:
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Parameter Q represents the tuning coefficient of the absorber, ratio 23 / kk  is the coefficient
of the damping in the stops. The damping in the stops corresponds, e.g. to the damping in
rubber stops or in stops consisting of a set of leaf springs.

3. Results of numerical simulation
The main aim of applying an absorber is to reduce the vibration of the basic system. As a

measure of the absorber efficiency the
extreme deflection of the coordinate 2x
can be taken, denoting it as 2X .

Fig. 2. Relative extreme deflections 2X
in dependence on tuning coefficient Q

for different values of ρ  (
sY

r
=ρ  -

relative stops distance) ( =µ 0.01, =κ 0.05, =12 / kk 2, =23 / kk 0.2)

The diagrams of 2X  in dependence on the tuning coefficient Q show the efficiency of the
absorber. For 12 <X  the absorber has a positive effect in comparison to the system without
an absorber. For further illustration the time histories of 1x , 2x  and the trajectories in the
phase plane ( 21 xx − , 21 xx ′−′ ) are presented.
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Three basic types of motion have been found:

(a) Periodic motion without impacts (for higher values of ρ ) – in the diagrams marked by
full lines.

(b) Periodic motion with impacts – in the diagrams marked by hatched lines.
(c) Non-periodic chaotic motion – in the diagrams marked by points.

In most cases the possible magnitude of the absorber mass is limited and thus the relative
mass ratio µ  is small. Two alternatives have been analysed: µ  = 0.01 and 0.05. For all
alternatives the value β  = 0.1 is common. Fig. 2 shows the diagrams of 2X  in dependence on
Q for several values of ρ  and for µ  = 0.01, κ  = 0.05, 12 / kk  = 2 and 23 / kk  = 0.2. We can
see that with the exception of a relatively narrow interval of Q the value of 2X  is very close
to l, i.e. the efficiency of the absorber is small. Also at optimal tuning the efficiency is not
high. The optimal value of the tuning coefficient decreases with decreasing ρ .

)(a )(b

)(c          )(d
Fig. 3. Trajectories in the phase plane ( 21 xx − , 21 xx ′−′ )

((a) for Q = 0.6, (b) for Q = 0.62, (c) for Q = 0.63, (d) for Q = 0.64)

For ρ  = 1 in the narrow interval around Q = 0.63 a chaotic motion occurs. The value of

2X  at Q = 0.63 is higher than for values of Q in a small interval around Q = 0.63. This can be
seen when comparing the results for different values of Q, presented in trajectories in the
phase plane ( 21 xx − , 21 xx ′−′ ) and in the time histories. Fig. 3 shows the trajectories in the
mentioned phase plane [(a) for Q = 0.6, (b) for Q = 0.62,  (c) for Q = 63, (d) for Q = 0.64].
Fig. 4 shows the time histories [(a) for Q = 0.62, (b) for Q = 0.63]. The motion is periodic for
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higher values of ρ : either with or without impacts. For 2≥ρ  there exists an interval of Q
where both types mentioned can exist.

)(a

)(b

Fig. 4. Time series of 1x  ((a) for Q = 0.62, (b) for Q = 0.63)
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For a higher value of µ  (µ  = 0.05) the results (for κ  = 0.05, 12 / kk  = 2, 23 / kk  = 0.2) are
presented in Fig. 5. We can see that more
favourable results have been obtained, in
comparison to the previous case, thanks to
the higher value of µ . With the exception
of ρ  = 1 the motion is periodic (with or
without impacts).

Fig. 5. Relative extreme deflections 2X  in
dependence on tuning coefficient Q for
different values of ρ  ( =µ 0.05, =κ 0.05,

=12 / kk 2, =23 / kk 0.2)

Similarly, as in case for µ  = 0.01, the optimal value of Q increases with increasing value
of ρ . For 4≥ρ  no impact motion occurs.

4. Conclusion
The optimal value of the tuning coefficient Q of the absorber decreases with decreasing the

relative stop distance ρ . The efficiency of the absorber increases with increasing the ratio of
the absorber mass to the basic system mass. Three types of motion have been found: periodic
motion without impacts, periodic motion with impacts, and chaotic motion with impacts. The
latter one has an unfavourable effect on the absorber efficiency. The effect of damping in
stops on the absorber efficiency is not important. Generally it can be stated that the impact
motion in the considered absorber system has a rather unfavourable effect on the efficiency of
the absorber.
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