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Summary: OFE copper (Oxygen Free Electronic copper) is extensively used
in military engineering for the design of shape charge warheads. Use is made
of its excellent deformation capabilities to initiate a metal jet for the target
penetration moving with the speed of several kilometers per second. Gray and
Follansbee (1988) conducted unique experiments with OFE copper specimens
subject to such extreme loading conditions. Controversial results were obtained
that could not be explained by any existing visco-plastic theory. The authors of
this paper made an attempt at an explanation by introducing a specific visco-
plastic model with time retardation. In the present work the model was cast to
the format of the standard continuum mechanics equations.

1. Introduction

A visco-plastic model involving time delay caused by internal material’s structure in-
ertia was proposed by Hirsch and Plešek (2003). Its uniaxial representation derived from
experimental data measured by Gray and Follansbee (1988) under high-velocity impact
conditions can be summarized as follows.

A material subject to shock loadings highly exceeding its yield stress cannot immedi-
ately release the elastic strain energy accumulated upon the shock rise-time. Macroscopic
plastic flow smeared over material grains is delayed according to the approximate formula( σe

2G

)3/2

τ = τ0 = const. (1)

Here, σe is the effective stress, G the shear modulus and τ is the retardation time mea-
suring the delay between the arrival of a shock wave and the initiation of macroscopic
yielding. The material constant τ0 on the right-hand side of the equation is called the
intrinsic time of the material. In order to put the above observations in a formal context
and derive quantitative results the problem is rephrased in terms of continuum mechanics
equations.
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182 00 Praha 8; e-mail: plesek@it.cas.cz

†Eitan Hirsch, IDF, MIL P.O.BOX 01055, Israel



Total strain εx is computed from the Hugoniot curve according to the applied shock
load pressure P , which corresponds to the assumption that the bulk modulus is a function
of hydrostatic pressure. On the other hand, the shear modulus G will be little influenced
by P , therefore, G is assumed to retain its initial value as in linear elasticity theory.
Hooke’s law then implies

σx − σr = 2G(εe
x − εe

r) (2)

The von Mises effective stress under uniaxial strain is defined as

σe = |σx − σr| = 2G|εe
x − εe

r| (3)

With respect to plastic yielding the material is incompressible

εp
x + εp

r + εp
r = 0 (4)

therefore εp
r = −1

2
εp
x. In the radial direction εr = εe

r + εp
r = 0 hence εe

r = 1
2
εp
x and in the

x -direction εx = εe
x + εp

x. Substituting these results to Eq. (3) we arrive at

σe = 2G|εx − 3
2
εp
x| (5)

The last equation suggests that the plastic strain can never exceed the critical value that
would have reduced the effective stress to zero. Thus

|εp
x| ≤ 2

3
|εx| (6)

and 2
3
|εx| may be thought of as an upper limit for plastic strain in the course of relaxation

process. Obviously, the actual plastic strain will be much smaller due to viscous effects,
which is discussed next.

2. Viscoplastic model

The simplest rate dependent constitutive equation to be used with rather limited ex-
perimental data is Perzyna’s (1963) overstress model

ε̇p = γ

(
σe − σY

σY

)m

(7)

where γ, m are material constants, σY is the subsequent yield stress of the material
hardened by the shock passage, σe > σY , and ε̇p is the rate of the equivalent plastic strain

ε̇p =
√

2
3
ε̇p
ij ε̇

p
ij = |ε̇p

x| (8)

The incompressibility condition Eq. (4) was used to simplify the last definition. Now,
Eq. (5), (8) are inserted into Eq. (7) after which the differential equation is obtained

ε̇p = γ

(
2G(ε− 3

2
εp)− σY

σY

)m

(9)
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where −εp
x = εp ≥ 0 and −εx = ε > 0 for compression loading were used for simplicity.

The governing differential equation of the relaxation process ε = const. can be inte-
grated with the initial condition εp(τ) = 0 to get(

2G

σY

(ε− 3

2
εp)− 1

)1−m

−
(

2G

σY

ε− 1

)1−m

= (m− 1)
3G

σY

γ(t− τ) (10)

where t− τ is the pulse duration after the retardation time τ has elapsed and m > 1. For
m = 1 we get instead of Eq. (10) the expression

εp = (
2

3
ε− σY

3G
)(1− exp

[
−3G

σY

γ(t− τ)
]
) (11)

3. Identification of material parameters

At least, two sets of measurements for substitution to Eq. (10) must be available to
calibrate m and γ. Given the data by Gray and Follansbee (1988) the measurements of
permanent deformation were difficult to carry out with sufficient accuracy. Thus, the only
information found in the paper was that the permanent strain did not exceed 1.5%.

The best way to start with, under such circumstances, is to make an idea how sensitive
the solution is to the choice of m parameter. Using the values G = 47 GPa, σY = 200
MPa and the values of ε—taken from experiments by Gray and Follansbee (1988)—we can
obtain the characteristics of εp since the end of the retardation time till the rarefaction
has arrived. For the 20 GPa shock load, the plot of εp against dimensionless time γ(t− τ)
shown in Fig. 1 is obtained.

Figure 1: Numerical solution of Eq. (9) at constant strain.
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The stress exponent m strongly influences the amount of plastic strain predicted at
a fixed time but the characteristics remain nearly straight lines up to 1.5% deformation
regardless of the (reasonable) m value. It follows that plastic yielding occurs at roughly
constant stress and the differential equation Eq. (9) can be solved approximately as

εp
i ' γ

(
2Gεi − σY i

σY i

)m

(ti − τi) (12)

where subscript i refers to a particular experiment. Upon elimination of γ from Eq. (12)
the m-parameter is expressed as a function of the ratio εp

i /ε
p
j for two independent mea-

surements i and j. In this way, the demand for accurate data can be substantially relaxed
by requiring only the knowledge of the two plastic strains ratio rather than their total
magnitudes.

In the present work even this datum is unavailable, therefore, the stress exponent
cannot be determined. On the other hand, if we confine ourselves to the modelling of
experiments under fixed loading level the solution is little sensitive to m. This parameter
may then be set arbitrarily provided that a proper choice of γ has been made. In other
words, only one independent parameter needs to be identified for a short pulse analysis
at a given impact velocity.

If, for instance, the 20 GPa shock load is considered the exact solution Eq. (10) can
be used to compute fludity parameter γ taking the plastic strain measured at its upper
limit εp = 0.015. Any of the matching pairs m, γ listed in Tab. 1 can be substituted as an
input to a computer code to predict about the same elastic-viscoplastic response for the
stress level given. Of course, much more accurate experiments would have to be carried
out in order to decide which of the pairs provides the closest fit.

Table 1: Matching values of material parameters.

m 1 2 3 4 5
γ [1/s] 1047 25.0 0.599 0.0144 3.50× 10−4

4. Inclusion of intrinsic time via internal variable

It is impractical to use the retardation model in numerical analyses in the fashion
presented so far since it would be difficult to handle τ within the context of internal state
variable formalism. In this section, we rephrase the model to a more suitable form.

A general expression for visco-plastic constitutive equations can be written as

ε̇p =
3

2

ε̇p

σe

S (13)

in which ε̇p is the visco-plastic strain tensor and S is the deviatoric stress. Eq.( 7) is
modified to

ε̇p = γ̄

(
σe − σY

σY

)m

H(σe − σY ) (14)
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where H denotes the Heaviside step function and γ̄ is considered to be dependent on
equivalent plastic strain εp. In principle, other internal variables such as backstress may
amend the system to invoke more complex hardening laws.

Now, the question is how to enforce the material reponse plotted schematically in
Fig. 2a. Theoretically, the plastic strain should be zero in interval [0, τ ], which is impos-
sible to achieve if γ̄ is supposed to be a function of standard internal variables (but not
the explicit function of time). It may be feasible, on the other hand, to approximate this
zero function by small values varying between the user defined limits εp0 and εpτ . These
limits are bound to maintain sufficient numerical accuracy.

a)

pτ

p0

ε

εp

ε

τ t εpτ εp

γ
γ

b)

Figure 2: Schematic plot of the hardening function γ̄.

An analytical function satisfying such requirements reads

γ̄(εp) =
γεn

p

εn
pτ + εn

p

(15)

where γ is the same constant as in Eq. (7) and n is a large number controlling the
abruptness of the jump at εpτ in Fig. 2b. Solution of Eq. (14) at constant stress leads to

εn
p − εn

p0 +
εn
pτ

(n− 1)εn−1
p0

−
εn
pτ

(n− 1)εn−1
p

= γ

(
σe − σY

σY

)m

t (16)

Substituting t = τ and defining εp0 = αεpτ , α < 1 we have

(1− αn)εn
pτ +

εpτ

(n− 1)αn−1
= γ

(
σe − σY

σY

)m

τ +
εn
pτ

n− 1
(17)

The last relation should be understood as a condition on numerical parameters εpτ , α and
n so that the turning point in Fig. 2a was placed exactly at time τ . For εpτ being small
and n large the approximate solution for α is

α '
[
(n− 1)

γ

εpτ

(
σe − σY

σY

)m

τ

] 1
1−n

(18)
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For chosen εpτ , n one can compute α from Eq. (18) and εp0 = αεpτ at each time step
in a numerical analysis. If εp0 > εp(t) then the threshold εp0 is inserted to Eq. (15) for
integration; otherwise the current value εp(t) should be used. According to Eq. (1), τ is
treated as a function of σe in problems with varying stress.

The described material model can now be completed by elastic relations of the type

σ = C :(ε− εp) (19)

in which the fourth order tensor C has the isotropic structure

Cijkl = (K − 2
3
G)δijδkl + G(δikδjl + δilδjk) (20)

As already mentioned, in the latter expression the shear modulus G is supposed to be
constant, i.e. G = G0, whereas the bulk modulus K is rendered dependent on its initial
value K0 and the hydrostatic pressure P .

An appropriate function can be derived from Hugoniot’s equations as

K̄ =
K0

2
+ sP +

√(
K0

2

)2

+ sK0P (21)

where K̄ is the secant bulk modulus defining the bulk sound speed and s is Hugoniot’s
material constant; s = 1.489 for copper. The dependence P (θ) generated by Eqs. (20)
and (19) must be such that

dP

dθ
= K̄ , θ = tr(ε− εp) (22)

Thus K → K0 as one of the parameters s or P approaches zero.

In this form, the proposed model with retardation time can be easily implemented in
any existing finite element code since the required modifications merely consist in Eq. (21)
and Eq. (15) together with Eq. (18) that describe simple hardening behaviour.

5. Numerical example

As an example, consider the 20 GPa shock data, i.e. σe = 2Gε = 9.729 GPa, t = 1 µs,
σY = 0.2 GPa, τ = 0.66 µs after Gray and Follansbee (1988) and m, γ are determined
according to Tab. 1.

We started with the investigation of the material model sensitivity to the choice of
numerical parameters n and εpτ . Eq. (15) can be cast to the form

γ̄(εp)

γ
=

(εp/εpτ )
n

1 + (εp/εpτ )n
(23)

which suggests that arbitrary units can be used for γ̄ and εp. Fig. 3 shows this function
with γ = 1, εpτ = 1 for increasing values of the n-exponent.
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Figure 3: Sensitivity of the hardening function to curvature exponent n.

At first glance, the S-shape curves do not represent well the desired step-wise charac-
teristics for small n up to about n ' 16. Moreover, the higher this exponent the higher
the probability of incurring numerical instabilities in the integration process. Fortunately,
εp(t) solution plotted in Fig. 4 also depends on the threshold value εpτ , which to a large
extent supresses the influence of n. The legend numbers in Fig. 4 denote first the threshold
value, the second introduced by a comma is n. A perfect agreement between the numeri-
cal solution and the theoretical model, composed of the zero axis in interval [0, τ ] and the
straight line with slope γ = const. afterwards, wittnesses a considerable robustness of the
proposed analytical expression. Safe inputs n = 8, εpτ = 10−6 thus may be recommended
in most situations.

It should be noted that the plastic strain at the end time 1 µs overshoots the prescribed
value εp = 1.5%. This is because the integration was performed at constant stress whereas
the material parameters m, γ were fit using the exact solution of Eq. (10) that took into
account stress relaxation. This deviation can be hardly seen in the scale of Fig. 1 where
all the curves look like straight lines.

In order to verify the model’s response under varying stress conditions the differential
equation Eq. (9) with γ̄ replacing the former constant γ was solved. Numerical computa-
tions were carried out for all the matching values in Tab. 1 with input parameters n = 8,
εpτ = 10−6 substituted. The results are shown in Fig. 5. It follows, on one hand, that
the exact solution Eq. (10) with relaxation effect included must be used to fit material
parameters but, on the other hand, once it has been done and matching constants m, γ
have been established there is little difference between the cases m = 1 ÷ 5. Thus, in
agreement with the discussion in section 3. one may conclude that the infuence of m on
the stress change can be disregarded in a short pulse analysis provided a consistent set of
material constants is available.
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Figure 4: Numerical solution of Eq. (14) at constant stress; m = 2.

Figure 5: Numerical solution of Eq. (9) at constant strain.

6. Conclusions

Due to the material inertia the formation of a new internal order essential for a plastic
slip to take place needs time. This dilation notable in experiments with high-velocity
impacted copper specimens was called the retardation time. Its value reduces with an
increase of the shock pressure, as expressed by Eq. (1). This type of dependence between
the pulse pressure value and its time length is also found in the spallation phenomenon.
A similar dependence on the material inertia probably explains such observation.
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The mathematical description given above to the observed process is mainly aimed to
provide a tool for describing the material response within the context of FE simulations.
To obtain a more accurate description of this physical process further detailed investi-
gation will be needed. For example, the length of time of the temporary retardation as
a function of the shock pressure needs to be studied in detail. Also the influence of the
pressure pulse rise time on the grains break-up process, when this pulse has not yet de-
veloped into a shock front, calls for a special study. The outlined procedure for numerical
simulation, however, can readily accommodate all such subtleties without the demand for
a serious reorganization of a computer code.
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