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Summary: This paper deals with description of heat and moisture transfer in de-
forming porous media. The mathematical model consists of balance equations of
mass, energy and linear momentum and of the appropriate constitutive equations.
The chosen macroscopic field variables are temperature, capillary pressures, gas
pressure and displacement. The discretization of governing equation using finite el-
ement method leads to the system of non-linear and non-symmetric system of equa-
tions. The solution of this system of equations is very precisely shown in the fol-
lowing paper “TRANSPORT PROCESSES: NUMERICAL SOLUTION”, authors J.
Kruis, T. Krejčı́, Z. Bittnar.

1 Introduction

Materials research in concrete has shown that a correct prediction of the distribution and history
of moisture content is inevitable for realistic determination of shrinkage, creep and thermal di-
latation. Furthermore, the pore moisture content directly affects strength, thermal conductivity
and the rate of hydration or maturing. Numerical analysis of drying and wetting is also indis-
pensable for derivation of the constitutive law from creep, shrinkage and thermal dilatation tests
at variable moisture conditions.

Similarly, the pore pressure distribution is necessary to analyze long-term deformations
of soils. The moisture and heat transport in porous materials consequently affects both the
upper structure and its sub-grade and, therefore, strongly influences interactions between the
two subdomains.

This phenomenon is mostly studied under the assumption that both the liquid and gas phases
flow through a rigid porous matrix [1]. However, this assumption is implausible, when analyz-
ing consolidation of soils and certain other slow (quasi-static) phenomena. To remedy insuffi-
ciency of the aforementioned approaches, the temperature and moisture fields are completed by
the displacement field, describing volume changes in a deforming porous material.

The aim of the present study is to explain in a condensed form the nature and theoretical
basis of the most widely used mathematical models describing the coupled heat and moisture
transport in deforming porous media, to provide a set of governing equations together with the
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finite element method. The theory discussed below is based on porous media theories given in
[2].

Customary matrix notation is used throughout the text. Matrices are denoted by uppercase
boldface italic letters, e.g. D, P etc. Conversely, lowercase boldface italic letters stand for
vectors σ, r etc.

2 Mass and heat transfer in deforming porous media - a review of theory

Constitutive relations

Moisture in materials can be present as moist air, water and ice or in some intermediate
state as adsorbed phase on the pore walls, respectively. Since it is in general not possible to
distinguish the different aggregate states, the water content w is defined as the ratio of the total
moisture weight (kg/kg) to the dry weight of the material. The degree of saturation Sw is a
function of capillary pressure pc and temperature T , which is determined experimentally

Sw = Sw(pc, T ). (1)

The capillary pressure pc id defined as

pc = pg − pw, (2)

where pw > 0 is the pressure of the liquid phase (water).

The pressure of the moist air, pg > 0, in the pore system is usually considered as the pressure
in a perfect mixture of two ideal gases - dry air, pga, and water vapor, pgw, i.e.,

pg = pga + pgw =
( ρga

Ma

+
ρgw

Mw

)

TR =
ρg

Mg

TR. (3)

In this relation ρga, ρgw and ρg stand for the respective intrinsic phase densities, T is the absolute
temperature, and R is the universal gas constant.

Identity (3) defining the molar mass of the moist air, Mg, in terms of the molar masses of
individual constituents is known as Dalton’s law. The capillary pressure is larger the smaller the
capillary radius is. It is shown thermodynamically that the capillary pressure can be expressed
unambiguously by the relative humidity RH using the Kelvin-Laplace law

RH =
pgw

pgws
= exp

(

−
pcMw

ρwRT

)

. (4)

The water vapor saturation pressure, pgws, is a function of the temperature only and can be
expressed by the Clausius-Clapeyron equation

pgws(T ) = pgws(T0)exp
[

−
Mw∆hvap

R

( 1

T
−

1

T0

)]

, (5)

where T0 is a reference temperature and ∆hvap is the specific enthalpy of saturation.

Materials having heat capacities is the term deliberately used to emphasize the similarity to
the description of the moisture retention. It is simply expressed as

H = H(T ), (6)
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where H is the mass specific enthalpy (J.kg−1), T - temperature (K).

It is not common to write the enthalpy in an absolute way as here. Instead, changes of
enthalpy are described in a differential way, which leads to the definition of the specific heat
capacity as the slope of the H − T curve, i.e.

Cp =
(∂H

∂T

)

p=const.
. (7)

The heat capacity varies insignificantly with temperature. It is customary, however, to correct
this term for the presence of the fluid phases and to introduce the effective heat capacity as

(

ρCp

)

eff
= ρsCps + ρwCpw + ρgCpg. (8)

Transfer equations

The mass averaged relative velocities, vα − vs, are expressed by the generalized form of
Darcy’s law [2]

nSα

(

vα − vs
)

=
krαksat

µα

(

− gradpα + ραg
)

, (9)

where α = w for the liquid phase and α = g for the gaseous phase.

Dimensionless relative permeabilities krα ∈ 〈0, 1〉 are functions of degree of saturation

krα = krα(Sw) (m · s−1). (10)

In Equation (9), ksat (m2) is the square (3x3) intrinsic permeability matrix and µα is the
dynamic viscosity (kg.m−1.s−1). The intrinsic mass densities ρα are related to the volume aver-
aged mass densities ρα through the relation

ρα = nSαρα. (11)

The relative permeability krw goes to zero, when water saturation Sw approaches Sirr, which is
the limiting value of Sw as the suction stress approaches infinity ([3]).

Diffusive-dispersive mass flux (kg.m−2.s−1) of the water vapor (gw) in the gas (g) is the
second driving mechanism. It is governed by Fick’s law

Jgw
g = nSgρ

gw
(

vgw − vg
)

= −ρgDgw
g grad

(ρgw

ρg

)

, (12)

where Dgw
g (m2.s−1) is the effective dispersion tensor. It can be shown

[2] that

Jgw
g = −ρg MaMw

M2
g

Dgw
g grad

(ρgw

ρg

)

= ρg MaMw

M2
g

Dga
g grad

(ρga

ρg

)

= −J ga
g . (13)

Recall that Dgw
g = Dga

g = Dg. Here, J ga
g is the diffusive-dispersive mass flux of the dry air in

the gas.

Conduction of heat in normal sense comprises radiation as well as convective heat trans-
fer on a microscopic level. The generalized version of Fourier’s law is used to describe the
conduction heat transfer

q = −χeffgradT, (14)
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where q is the heat flux (W.m−2), χeff is the effective thermal conductivity matrix (W.m−1.K−1).

The thermal conductivity increases with increasing temperature due to the non-linear behav-
ior of the microscopic radiation, which depends on difference of temperatures raised to the 4th

power. Presence of water also increases the thermal conductivity. A suitable formula reflecting
this effect can be found in [2].

Deformation of solid skeleton. Concept of effective stress

The stresses in the grains, σs, can be expressed using a standard averaging technique in
terms of the stresses in the liquid phase, σw, the stresses in the gas, σg, and the effective
stresses between the grains, σef . The equivalence conditions for the internal stresses and for
the total stress σ lead to the expression [4].

σ = σef + Swσw + Sgσ
g + ∆τ . (15)

Assuming that the shear stress τ in fluids is negligible converts the latter equation into the form

σ = σef − psm, (16)

where
σ =

{

σx, σy, σz, τyz, τzx, τxy

}T
, m =

{

1, 1, 1, 0, 0, 0
}T

, (17)

and
ps = Swpw + Sgp

g. (18)

Deformation of a porous skeleton associated with the grain rearrangement can be expressed
using the constitutive equation written in the rate form

σ̇ef = Dsk

(

ε̇− ε̇0

)

. (19)

The dots denote differentiation with respect to time, Dsk = Dsk(ε̇, σef , T ) is the tangential
matrix of the porous skeleton and ε̇0 represents the strains that are not directly associated with
stress changes (e.g., temperature effects, shrinkage, swelling, creep). It also comprises the
strains of the bulk material due to changes of the pore pressure

ε̇ = −m
( ṗs

3Ks

)

, (20)

where Ks is the bulk modulus of the solid material (matrix).

When admitting only this effect and combining Equations (16), (19) and (20), we get

σ̇ = σ̇ef − ṗsm = Dskε̇ − αmṗs = σ̇′′ − αmṗs, (21)

where

α =
1

3
mT

(

I −
Dsk

3Km

)

m = 1 −
Ksk

Ks

< 1, (22)

and Ksk = mTDskm/9 is the bulk modulus of the porous skeleton. For a material without
any pores, Ksk = Ks. For cohesive soils, Ksk << Ks and α = 1. The above formulas are also
applicable to long-term deformation of rocks, for which α ≤ 0.5, and this fact strongly affects
Equation (21) [5].
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Changes of the effective stress along with temperature and pore pressure changes produce
change of the solid density ρ̇s. To derive the respective material relation for this quantity, we
start from the mass conservation equation for the solid phase. In the second step we introduce
the constitutive relationship for the mean effective stress expressed in terms of quantities de-
scribing the deformation of the porous skeleton. After some manipulations we arrive at the
searched formula

(1 − n)
ρ̇s

ρs
= (α − n)

( ṗs

Ks

− βsṪ
)

+ (α − 1)divvs, (23)

where βs is the thermal expansion coefficient of the solid phase.

Similar approach applied to the mass conservation equation of the liquid phase leads to the
following constitutive equation

ρ̇w

ρw
=

ṗw

Kw

− βsṪ , (24)

where Kw is the bulk modulus of water and βw is the thermal expansion coefficient of this
phase.

Set of governing equations

The complete set of equations describing the coupled moisture and heat transport in de-
forming porous media comprises the linear balance (equilibrium) equation formulated for a
multi-phase body, the energy balance equation and the continuity equations for the liquid water
and gas.

Continuity equation for the dry air

∂

∂t

(

ϕ(1 − Sw)ρga
)

+ α(1 − Sw)ρgadivu̇ − div
(

ρga krgksat

µg
gradpg

)

+

+div
(

ρg MaMw

M2
g

Deffgrad
(pgw

pg

))

= 0, (25)

where u̇ (u̇ = vs) is the velocity of solid.

Continuity equation for the water species

∂

∂t

(

ϕ(1− Sw)ρgw
)

+ α(1− Sw)ρgwdivu̇ − div
(

ρgw krgksat

µg
gradpg

)

+

−div
(

ρg MaMw

M2
g

Deffgrad
(pgw

pg

))

=

= −
∂

∂t

(

ϕSwρw
)

− αSwρwdivu̇ + div
(

ρw krwksat

µw
(gradpg − gradpc − ρwg)

)

(26)

Energy balance equation

(

ρCp

)

eff

∂T

∂t
− div

(

λeffgradT
)

+

−
(

Cpwρw krwksat

µw
(gradpg − gradpc − ρwg) + Cpgρ

gw krgksat

µg
gradpg

)

gradT =

= ∆hvap

[ ∂

∂t

(

ϕSwρw
)

+ αSwρwdivu̇ − div
(

ρw krwksat

µw
(gradpg − gradpc − ρwg)

)]

(27)
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The equilibrium equation (the linear balance equation) must yet be introduced to complete
a set of governing equations

div
(

σ − m(pg − Swpc)
)

+ ρg = 0 (28)

with density of the multi-phase medium defined as

ρ = (1 − n)ρs + nSwρw + nSgρ
g = ρs + ρw + ρg. (29)

Initial and boundary conditions

The initial conditions specify the full fields of gas pressure, capillary or water pressure,
temperature and displacement and velocities:

pg = pg
0, pc = pc

0, T = T0, u = u0, and u̇ = u̇0, at t = 0. (30)

The boundary conditions can be imposed values on Γ1
π or fluxes on Γ2

π, where the boundary
Γ = Γ1

π + Γ2
π.

pg = pg on Γ1
g, pc = pc on Γ1

c, T = T on Γ1
T , u = u on Γ1

u. (31)

The volume averaged flux boundary conditions for water species and dry air conservation equa-
tions and energy equation to be imposed at the interface between the porous medium and the
surrounding fluid are as follows

(

ρgaJga − ρgJgw
)

·n = qga on Γ2
g

(

ρgwJga + ρwJw + ρgJgw
)

·n = βc(ρ
gw − ρgw

∞
) + qgw + qw on Γ2

c (32)

−
(

ρwJw∆hvap − λeffgradT ) ·n = αc(T − T∞) + qT on Γ2
T

where n is the unit normal vector of the surface of the porous medium, ρgw
∞

and T∞ are the mass
concentration of water vapor and temperature in the undisturbed gas phase far away from the
interface, and qga, qgw, qw and qT are the imposed air flux, the imposed vapor flux, the imposed
liquid flux and the imposed heat flux, respectively.

The traction boundary conditions for displacement field are:

σ ·n = t on Γ2
u (33)

where t is the imposed traction.

3 Discretization of governing equations

A weak formulation of the governing equations (25) to (28) is obtained by applying Galerkin’s
method of weighted residuals. For the numerical solution, the governing equations are dis-
cretized in space by means of the finite element method, yielding a non-symmetric and non-
linear system of partial differential equations:

Kuuu + Kugpg + Kucpc + KutT = F u,

Cggṗg + Cgcṗc + CgtṪ + Cguu̇ + Kggpg + Kgcpc + KgtT = F g,

Ccgṗg + Cccṗc + CctṪ + Ccuu̇ + Kcgpg + Kccpc + KctT = F c, (34)

C tgṗg + C tcṗc + CttṪ + C tuu̇ + Ktgpg + Ktcpc + KttT = F t.
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The equations (34) can be rewritten in concise form as

K(X)X + C(X)Ẋ = F (X), (35)

where XT = {pg, pc, T , u}, C(X) is “the general capacity matrix”, K(X) is “the general
conductivity matrix” and are obtained together with F (X) by assembling the sub-matrices
indicated in equations (34). The dot denotes the time derivative.
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[4] Z. Bittnar and J. Šejnoha, “Numerical methods in structural mechanics”, ASCE Press and
Thomas Telford, NY, London (422), 1996

[5] O. C. Zienkiewicz (1983) Basic formulas of static and dynamic behaviour of soils and
other porous media. Institute of Numerical Methods in Engineering. University College of
Swansea
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