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Summary: We present the orthotropic hyperelastic material model for numerical
simulation of the loading of the cylindrical membrane. The coefficients of strain
energy function of the hyperelastic orthotropic material are fitted to the
experimental results by the nonlinear least squares method. The components of
the deformation gradient are determined from measured displacements of the grid
points drawn on the cylindrical surface of the spring. The stress tensor is
calculated from the membrane theory. The deformed shape of the spring surface
is measured from the photographic records. The strain energy function is
expressed in terms of tensorial invariants with regard to the assumed material
symmetry. The deformation of air-spring is calculated by solving the system of
five first-order ordinary differential equations with the material constitutive law
and proper boundary conditions.

1. Introduction
The main purpose of authors is the numerical simulation of inflation of the composite

cylindrical membrane made of rubber matrix reinforced by textile cords. Some orthotropic
and transversely hyperelastic constitutive models appropriate for such type of material can be
found in literature. Most of them are represented by strain energy function in the form of a
polynomial, exponential or logarithmic [3, 4, 10] function of strain invariants regarding the
assumed material orthotropy. However the development of the constitutive theory of
anisotropic elastic or viscoelastic materials at finite strains is still far to be complete and the
publications in this field are sparse. The constitutive equations of the transversally isotropic
material in the nonlinear stress and deformation domain are presented in the papers of
Holzapfel and coll. [3], Bonet and Burton [2] and Verron [11].

We use the consistent constitutive model of direction dependent hyperelastic material
presented in papers of Ogden, Holzapfel, Gasser and coll. [3, 4] applied by authors to the
problem of the mechanical response of arterial walls and of fiber reinforced composites at
finite strains. The deformation field is generally determined by the finite element method.
However, we use the method of the numerical integration of the system of the ordinary
differential equations of problem described by Green and Adkins [9] and recently for
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isotropic membrane by Guo [4]. We incorporated into this procedure our own orthotropic
material law. This method appeared to be quite promising and we presume to use it for the
inverse identification of material parameters. Details on the experimental setup and the
experiment evaluations can be found in the previous papers of authors [5-8].

2. Deformation of cylindrical orthotropic membrane

We determine the main geometric features of the inflated membrane in according with the
derivation in [1, 4]. The thin cylindrical membrane of air-spring at Fig. 1 has the initial radius
of mid-surface R, and length 2L. Its initial wall thickness H is assumed to be uniform. The
undeformed profile of membrane is described by polar coordinate system, (X, Φ, R). The
cylindrical membrane is inflated by the internal pressure.

Fig. 1 Undeformed and deformed profile of cylindrical orthotropic membrane

The deformed cylindrical membrane is referred to the polar coordinate system (x, φ, r). A
material particle moves during the deformation from the position in the undeformed profile,
C(X, Φ, R) to the deformed profile, c(x, φ, r), along its quasi-equilibrium path.  We assume
the axisymmetric deformation, φ ≡ Φ. The principal stretch in axial and circumferential
directions, principal curvatures and geometric relations are
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where s is the arc length measured from pole (x = 0) to the particle c(x, φ, r) along the
meridian of the deformed profile. S is the length corresponding to s in the undeformed profile.
We introduce an auxiliary variable θ, the angle of the tangent line. The radius r and the
thickness h of the membrane are with respect to the deformed configuration. The radial stretch
λ3 is determined from the incompressibility constraint

1321 =λλλ (2)
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where R and H are the radius and the thickness in the undeformed configuration.

3. Constitutive equations

The Cauchy stresses are defined as the partial derivatives of strain energy function Ψ with
respect to the deformation [3, 4]. We have the following expressions:
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If we express Ψ as a function of the three principal stretches Ψ=Ψ(λ1, λ2, λ3) – p*(J – 1),
with the indeterminate Lagrange multiplier p*, we can express Cauchy stresses [3] as
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We assume the isochoric deformation and we neglect the dissipation due to irreversible
effects. The energy stored in the fibers is assumed in the form of an exponential function. The
free energy function in two dimensional problem can be supposed in the form [1]

( ) { }i i i i

3
2 2 2 2 2i 1

1 2 1 2 1 2 2 2 1
i 1 i 2

k( , ) 3 exp[k ( cos sin 1) ] 1
k

α α −α −α

=

µ
Ψ λ λ = λ + λ + λ λ − + λ α + λ α − −

α∑ ,   (6)

where λ1 and  λ2 are the axial and circumferential stretches respectively, and α is the angle of
the two families of reinforcing fibers. We suppose the reinforcing fibers are double-helically
arranged in the matrix material symmetrically to the circumferential direction. The angle α of
fibers is supposed to be 48.8o. The parameters µi and αi of Ogden’s model of rubber [3] are

µ1 = 630 kPa, µ2 = 1.2 kPa,  µ3 = -10 kPa, α1 = 1.3,   α2 = 5,  α3 = -2.
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The stress-like parameter k1 and the non-dimensional parameter k2 are determined from the
experimental results and from the 2D cylindrical membrane approximation.
4. Identification of material parameters

The theory of nonlinear membranes has been presented by Green and Adkins [9] and
applied to various inflated structures [4]. The quasi-static equilibrium equations of problem
are

( )1 2
d drT r T
ds ds

= ,      1 1 2 2T T pκ κ+ = , (7)

where p is the inner pressure, T1 and T2 are the stress resultant forces per unit length in the
meridional and circumferential directions. The stress resultant forces in the deformed
configuration are

T1 = hσ1,   T2 = hσ2, (8)

where Cauchy stresses σ1 and σ2 are given by (5).

We effectuated several series of experiments of inflation of cylindrical air-spring with the
variable axial force F and the inner pressure. The Cauchy stress is determined from the
equilibrium in Fig. 2
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Substituting r = λ2R and (3) into (9) we obtain 1σ  as
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We can deduce 2σ  from equilibrium equation (7)2. We assume 3σ  = - p after the theory of
inflated membrane.
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After the substitutions into equations (4) we obtain set of the nonlinear equations for the
two variables k1 and k2
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The experimentally measured values of λ1 and λ2 in several points of the central part of our
cylindrical membrane were substituted into the equations (12). Taking the logarithm of (12)
we will get a set of linear equations for the variables lnk1 and k2. The resulting
overdetermined system of linear equations was solved in Matlab. The parameters were
k1=4.187e+04 kPa and k2 = -23.775. The function of the Helmholtz energy potential for these
parameters is convex.

5. Determination of deformation of cylindrical membrane

After the substitution of (1), (3), (5) and (8) into equations of equilibrium (7) we get after
some simplifications the system of five ordinary differential equations for the principal
stretches λ1 and λ2, the tangent angle θ, the coordinate x in the deformed configuration and
the inner pressure p with respect to the coordinate X of the undeformed configuration
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We solved the set of differential equations (13) by the shooting method in Matlab with the
boundary condition for 0

1λ  and 0
2λ  determined from the experiments. The results are at the

Fig. 3 where calculated stretches and deformed profile of membrane is compared with
experimental one.
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Fig. 3  Results of deformations of cylindrical membrane of air-spring

6. Conclusions

The deformations of the nonlinear composite membrane were determined experimentally.
The problem of the identification of the material parameters was solved.  The proposed strain
energy function was implemented into the calculus of deformations of the cylindrical
membrane of air-spring. The deformations were determined by numerical solution the system
of ordinary differential equations based on the membrane theory. The method will be used for
the inverse identification of material parameters of the inflatable structures namely air-
springs.
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