@ 1 National Conference with International Participation

ENGINEERING MECHANICS 2003  |paper no.

2003 Svratka, Czech Republic, May 12 — 15, 2003 127

FETI DOMAIN DECOMPOSITION METHOD APPLIED TO
SOLUTION OF CONTACT PROBLEM WITH LARGE
DISPLACEMENTS

J. Dobi&s", S. Ptak*, D. Gabriel*, Z. Dostalt, V. Vondrak’, D.Horéak!

Summary: The paper deals with application of the FETI (Finite Element Tearing
and Interconnecting) method to finite element solution of contact problems while tak-
ing into account another nonlinearity, namely the large displacements and rotations.
We show, in terms of numerical experiments (i) performance of the algorithms stem-
ming from the FETI method, in particular its numerical and parallel scalabilities and
optimality of the dual penalty, and (ii) solution of a Hertzian contact problem, i.e.
achieved accuracy of the numerical solution by comparison with the analytical one,
and the convergence rate.

1 Introduction

Solution to contact problems between solid bodies in general poses difficulties to the finite
element solvers. In spite of the fact that the forces generated by contact are formally of the
same form as the boundary conditions introduced by externally applied surface tractions,
we do not generally know either the distributions of the contact tractions throughout the
areas currently in contact or shapes and magnitudes of these areas until we have run the
problem. Their evaluation have to be part of the solution, which implies that the contact
problems are inherently strongly nonlinear and an iterative approach has to be invoked.
There exist many method to model the contact boundary conditions, see for example
Dobiés (1997). Let us recall herein the Lagrange multiplier method, the Penalty method,
the Perturbed Lagrangian method and the Augmented Lagrangian method as the most
commonly used in practice.

One of new methods which can successfully be applied to solution to contact problems
is the FETI (Finite Element Tearing and Interconnecting) method. This method is based
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on decomposition of a spatial domain into non-overlapping sub-domains that interact with
each other in terms of the Lagrange multipliers. This method is one of the most successful
algorithms for parallel solution of problems described by elliptic partial differential equa-
tions. The FETI methodology turns the contact problem into the quadratic programming
problem with equality constraints and non-negativity constraints.

The authors of this paper developed in close cooperation a code that can be run in
the framework of our in-house general purpose finite element computational system PMD
(Package for Machine Design).

The contact non-linearities often occur along with other non-linearities. In this pa-
per we deals with large displacements and finite rotations, i.e. with the geometric non-
linearities.

2 Outline of theory

In this section the FETI method and our approach to the solution to non-linearities are
succinctly described.

2.1 FETT method for variational inequalities

The FETI method proposed by Farhat & Roux (1992) turned out to be one of the most
successful algorithms for parallel solution of problems described by elliptic partial dif-
ferential equations. The FETI method is based on decomposition of a spatial domain
into non-overlapping sub-domains that are ”glued” by Lagrange multipliers. Theoretical
results and experimental evidence by Farhat et al. (1994) and Mandel & Tezaur (1996)
were presented to establish scalability of the variants of the FETI algorithm including
those using the so called natural coarse grid. Let us recall that an algorithm is called
scalable for a given class of problems if the cost of solution of the discretized problem
is proportional to the number of nodal parameters and the speed up due to the paral-
lel implementation is proportional to the number of processors. The FETI method was
adapted also to the solution of variational inequalities with theoretical and experimental
results showing that it is possible to preserve the scalability of FETI even for solution of
these more complex problems (Dureisseix & Farhat, 2001, and Dostél et al., 2000).

We can describe the basic ideas on a model problem of Fig. 1. The left membrane
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Figure 1: Model problem and its solution



Dobi&s, J, Ptak, S., Gabriel, D., Dostdl, Z., Vondrék, V.,Horék, D. 3

is fixed on the left edge, the right is floating as in Fig. 1 and the left edge of the right
membrane is not allowed to penetrate below the right edge of the left membrane.

Using the finite element discretization, we get the discretized version of our model
problem with the auxiliary domain decomposition that reads

1
min §uTAu —fTu st. B'u<0 and Bfu=0. (1)

In (1), A denotes a positive semidefinite stiffness matrix, the full rank matrices B! and
BF describe the discretised inequality and gluing conditions, respectively, and f represents
the discrete analog of forces.

The FETI methodology (Dostal et al. 2000) turns this variational inequality elimi-
nating the primal variables into the quadratic programming problem with equality con-
straints and non-negativity bound - this constraints is a considerable complication as it
is necessary to identify the active constraints in the solution

min %/\TBATBT/\ — A BA'f st. A\;>0 and R'(f—B'A) =0, (2)

where A' denotes a generalized inverse that satisfies AATA = A, and R denotes the full
rank matrix whose columns span the kernel of A. We shall choose R so that its entries
belong to {0,1} and each column corresponds to some floating auxiliary sub-domain %

with the nonzero entries in the positions corresponding to the indices of nodes belonging
to Q4.

Even though problem (2) is much more suitable for computations than (1), further
improvement may be achieved by adapting some simple observations and the results of
Farhat et al. (1994) and Mandel & Tezaur (1996). Let us denote

F=BA'BT, G=R"B", ¢é=R"f, d=BA'},

and let A solve GA = &, so that we can transform the problem (2) to minimisation on the
subset of the vector space by looking for the solution in the form A = u + A. Since

1 ~ 1 ~ ~  ler ~ e
5,\TFA —Ad= E,JFM —p'(d—F\) + 5ATFA —\'d,
problem (2) is, after returning to the old notation, equivalent to
1 ~
min §ATF)\ —A'd st GA=0 and X >-)\ (3)

with d = d — FA. The same procedure may be applied to contact problems of elasticity.

This problem turns out to be a suitable starting point for development of efficient

algorithms for variational inequalities, as we can use the analysis of the FETI method by
Mandel & Tezaur (1996).
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2.2 Contact and geometrical non-linearities

While the FETI method is directly applicable to the solution to contact problems with
small displacements, linearly elastic, and frictionless, any other non-linearity necessitates
introduction of additional iteration loop as a consequence of geometrically or materially
nonlinear behaviour of structural system. In our case the non-linearity we take into
account, apart from the contact, is the one caused by large displacements and finite
rotations. To this end we use the total Lagrangian formulation which includes all kinetic
non-linear effects. As a strain measure we make use of the Green—Lagrange tensor and
as a stress measure the second Piola—Kirchhoff tensor which is work—conjugate with the
previously mentioned strain tensor, see e.g. Bathe (1996).

In the above mentioned additional iteration loop, we evaluate, in terms of algorithm
stemming from the FETI method, nodal displacements and nodal forces due to contact
(i.e. the Lagrangian multipliers) in the current deformed geometry. Then the nodal point
forces corresponding to element stresses are evaluated. The residual of this forces minus
the external loading and the contact forces represents a new right hand side for another
iteration cycle.

3 Numerical experiments

To illustrate the performance of the algorithms, in particular its numerical and parallel
scalabilities and optimality of the dual penalty, we have implemented algorithms in C
exploiting the package PETSc, see Balay et al. The experiments were run on the Lomond
18-processor Sun HPC 6500 Ultra SPARC-II based SMP system with 400 MHz, 18 GB
of shared memory, 90 GB disc space, nominal peak performance 14.4 GFlops, 16 kB level
1 and 8 MB level 2 cache in EPCC Edinburgh and on the SGI Origin 38000 with shared
memory, 128 processors R12000, 400 MHz, 48128 MB RAM, 500 GB disk space, DLT
7000 stacker 70 GB,net 3x ATM 155 Mb/sec, FDDI 1Gb/sec in Linz.

The FETI method was recently combined with the penalty method (Dostédl & Hordk)
to obtain a theoretically supported scalable algorithm for solution of coercive and semi-
coercive variational inequalities (this penalty method is optimal in the sense that a given
bound on the relative error of violation of the equality constraints may be achieved with
the value of the penalty parameter independent of the discretisation parameter). Fig.2a
illustrates that the algorithm presented enjoys high parallel scalability (for problem with
h =1/512,H = 1/8, primal dimension 540800, dual dimension 14975 and 53 iterations in
73.6 sec). Fig.2b indicates that algorithm enjoys numerical scalability (the number of the
conjugate gradient iterations for a given ratio H/h varies very moderately with changing
dimension of the problem).

We used also the augmented Lagrangian algorithm proposed by Dostdl, Friedlander,
Santos and Gomes (Dostél et al., 2000) which generates approximations of the Lagrange
multipliers in the outer loop while the bound constrained quadratic programming prob-
lems are solved by efficient algorithms in the inner loop. The results for the largest
problems are in Table 1. Numerical experiments with the model variational inequality
discretised by up to more than eight million of nodal variables indicate that the algorithm
may be efficient and are in good agreement with the theory. Though we have restricted
our attention to the model problem, all the reasoning may also be exploited to solution



_ Dobhiss, J., Ptak, S., Gabrid, D., Dostdl, Z., Vondréak, V., Hora&k,D. 5§

2000 T T T T T T T 120

1800

100

1600

1400 -

1200

1000 [

time [sec]
Number of CG iterations

@
3
S

600

400 -

200

L L L L L L L L L
0 05 1 15 25 3 35 4 0 05 1 25 3

2 15
log2(procs) log2(1/H)

Figure 2: Parallel and numerical scalability

of contact problems of elasticity including those with Coulombian friction (Dostél et al.,
2002).

Table 1: Large problems by augmented Lagrangians using SGI Origin

h H prim. dual. | num. of | procs | cg. | time
dim. dim. | subdom. iter. | [sec]

1/1024 | 1/8 | 2130048 | 29823 128 32 47 | 167
1/2048 | 1/8 | 8454272 | 59519 128 64 65 | 1281

The algorithms stemming from the FETI method were also implemented in our in-
house general purpose finite element computational system PMD (Package for Machine
Design).

We tested them against solution to a classic Hertzian problem. It consists in contact of
two cylindrical bodies with their axes lying parallel to each other while they are pressed
against each other by a force perpendicular to the axes. They make contact over a strip
lying parallel to the axes.

The Hertz theory of elastic frictionless contact yields analytical formulae for distribu-
tion of stresses within bodies, contact pressure on contacting surfaces, values of displace-
ment of some points, etc. (Johnson, 1985).

The radius of the first cylinder is R = 1000mm and the radius of the second body
is infinite, which means that the body is a half-space. The material properties of both
bodies were the same and were as follows: Young’s modulus was E = 2.0 x 10'! Pa and
Poisson’s ratio v = 0.3. The mesh was modelled with 1098 elements and 2070 nodes.

The results are shown in Fig.3. It shows distribution of o,, evaluated by the penalty
method and the Lagrangian multiplier method, and for comparison the analytical solution
given by McEwen’s formula is also plotted. The stresses o,, are those in the direction
perpendicular to the axis of the cylindrical body and surface of the half-space body.
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Figure 3: Comparison of analytical and numerical solutions: Distribution of o,,

4 Conclusions

The numerical experiments shown that the FETI method is very suitable for analysis of
large scale problems on high performance supercomputers because the algorithms stem-
ming from it can be successfully implemented in parallel due to the nature the FETI
method and they show good scalability.

In addition, the idea that the individual sub-domains, into which the body is divided,
interact with each other via the Lagrangian multipliers or forces, can also be applied to
solution of contact problem. The reached accuracy is very good and we are able to solve
semicoercive problems.
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