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Summary: Singular cases – singularities of the robot are defined as positions 
in which the robot loses kinematic definiteness. The loss appears in both direct 
and inverse kinematic transformation. Existence of the singularities in the robot 
workspace causes sharp changes in profiles of the velocities and accelerations 
and changes in force effects. The objective of this paper is to investigate 
singularities (singular positions) of one parallel robot structure and to simply 
classify such singular cases. The analysis of the singularities is important for real 
application, i.e. for control design, which should ensure effective and safe 
cooperation of all drives – actuators in the robot structure. 

 
 
1. Introduction 
Singular cases – singularities (Stejskal, V., 1997; Tsai, L.-W., 1999) of the robot are defined 
as positions in which the robot loses kinematic definiteness. The loss appears in both direct 
and inverse kinematic transformation. Existence of the singularities in the robot workspace 
causes sharp changes in profiles of the velocities and accelerations and changes in force 
effects. The objective of this paper is to investigate singularities (singular positions) of one 
parallel robot structure (Neugebauer, R. ed., 2002; Valášek, M. et al., 2002) and to simply 
classify such singular cases. The analysis of the singularities is important for real application, 
i.e. for control design (Kock, S., & Schumacher, W., 2000) which should ensure effective 
and safe cooperation of all drives – actuators in the robot structure. Thus, from control point 
of view, in singular positions the robot (mechanical structure) loses controllability and user 
can not influence this unsafe situation. 

The structure of the paper is the following. In section 2, the geometrical relations 
in parallel structure are described. Then, the paper continues by section 3, which deals 
with singular analysis using the relations from section 2. The next section 4, section 
of examples, presents singular analysis for real parallel structure with given parameters. 
The paper is concluded by simple classification of singular cases in section 5 and conclusions 
in section 6. 
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2. Description of the geometrical relations in parallel robot structure 
Let us consider the robot with n degrees of freedom (DOF) e.g. the robot with 3 DOF shown 
in Fig. 1. The robot consists of movable platform defined by dimensions d1, d3 and angle β, 
workspace or fixed platform defined by the fixed pivots A1, A2, A3, and arms, 
which are characterized by their lengths l1, l3, l5 (external arms) l2, l4, l6 (internal arms) 
and their appropriate orientation angles  321 ,, ϕϕϕ  and  321 ,, ψψψ  respectively. 
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Fig. 1. Scheme of planar parallel robot structure. 

 
The coordinates appearing in the robot structure may be divided into drive z (ϕi), 

operational q (xC1, yC1, ψ ) and other auxiliary za (ψi) coordinates. All these coordinates are 
either independent (their number equals to DOF) or dependent (remaining coordinates) 
together called physical coordinates (Stejskal, V. & Valášek, M., 1996). Let us consider 
possibility to reduce number of structural equations (1 a) to number of degrees of freedom and 
that the equations represent relations only between operational q and drive z coordinates. 
Then, the relations can be generally expressed as follows: 

for positions 

     0zzqf =) , ,( a     reduced to  0zqf =) ,(     (1 a, b) 

for velocities 

  0zzqΦqzqΦ zq =+ && ) ,() ,(       (2) 

for accelerations 

     0zzqzzqqzqqzq zzqq =+++ &&&&&&&& ) ,(Φ) ,(Φ) ,(Φ) ,(Φ      (3) 

The equations (1 b), (2) and (3) represent the main kinematic relations in the structure. 
Now we can start investigating the robot singularities. 
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3. Singular analysis 
To analyze singularities of the robot in Fig. 1, let us consider the equations (1 b), (2) and (3) 
adjusted for its coordinates. As mentioned, existence of singularities in the robot workspace 
causes sharp changes in profiles of velocities and accelerations and changes in force effects. 
Therefore when analyzing the singularities, we search situations, in which the system 
of equations (2) or (3) has infinity number of the solutions or has no solution. The situations 
appear when the systems of equations lead to undefined relations between drive and 
operational coordinates. It can be investigated by evaluating the determinants of the Jacobian 
matrixes ( Φq, Φz ) from equation system (2) (Stejskal, V., 1997). Thus, if the equation 
system (2) has full rank Jacobian matrixes, then the topical robot configuration is properly 
determined. 

For the robot in Fig. 1, structural relations (geometrical constrains) can be most simply 
written as follows: 

0zzqf =) , ,( a        (4) 
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The structural system (5) consists of the six equations, which contain the nine physical 
coordinates ],,,,,,,,[

11321321 ψψψψϕϕϕ CC yx . However, the robot has only three degrees 
of freedom thus the three equations are dependent. Therefore, we rewrite the system to adequate 
form having just only three equations: 

0zqf =) ,(          (6) 
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Then we can determine the Jacobian matrices of the robot system: 

0zzqqzq

0z
z

zqfq
q

zqf

zq =+

=
∂

∂
+

∂
∂

&&

&&

) ,() ,(

) ,() ,(

ΦΦ            (8)

 

Belda, K., Stejskal, V. 3



Jacobian matrix Φz (drive coordinates)        =
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Jacobian matrix Φq (operational coordinates) =
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To evaluate the determinants of the Jacobian matrixes effectively, some additional 
equations are needed. It means that for the evaluating we need direct (explicit) relation 
between drive and operational coordinates, at least in one direction (direction is arbitrary). 
Equations (5) do not provide it. Therefore, we must return to the scheme of the robot in Fig. 1. 
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Fig. 2. Detail of the first arm group of the parallel robot; 

description for determining the explicit relation between the coordinates. 
 
For this parallel structure, the explicit relation can be determined in the following way. 

When considering the Fig. 2, then for first arm group we can write: 
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And similarly, it is possible to write relations for remaining arm groups: 
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The functions ),,(),,,(

1111 21 ψϕψϕ CCCC yxyx  and ),,( 
113 ψϕ CC yx  express inverse kinematic 

transformation of the parallel robot structure, i.e. transformation of operational coordinates 
to drive coordinates. Now, the operational (Cartesian) coordinates may be selected as 
independent and definitional coordinates for computation of the determinants. 
 
 
4. Examples 
Let us consider the following structural parameters for planar parallel robot as illustrated 
in Fig. 1: lengths of arms l1 = l3 = l5 = l2 = l4 = l6 = 0.636 m; dimensions of the movable 
platform d1 = d3 = 0.2 m, and angle β = π/3; Cartesian coordinates of vertexes of triangular 
workspace (fix platform) m1;m5.0;m0;m1;m0;m0

332211
====== AAAAAA yxyxyx . 

The following figures show values of individual determinants in the robot workspace. 
The figures are drawn for constant angle of movable platform ψ  = 0. 

      
Fig. 3. Spatial graphs: a) values of determinant Φz (det(Φz) vertical axis) 

and b) values of determinant Φq (det(Φq) vertical axis). 

a)                                                                          b) 
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Fig. 4. Planar contour graphs a) values of determinant Φz and b) values of determinant Φq. 

In neighborhoods of the fixed pivots A1 [0, 0], A2 [1, 0], A3 [0.5, 1] (Fig. 1), the singular 
points appear (Fig. 4 and Fig. 5). Singular points around A2 and A3 are shifted to the left side 
by proper projection of side di = 0.2 m of the movable platform. 

 

 
Fig. 5. Spatial graph and its planar contours for combined singularities; (ψ = 0). 

a)                                                                          b) 
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5. Classification of singular cases 
According to determinants of individual Jacobian matrixes and computational tests we can 
define three types of singularities: 

• Singularities of the first case (Inverse Kinematic Singularities). 

Inverse kinematic singularities occur when one of the diagonal elements of Φz disappeared. 
Consequently, an inverse kinematic singularity arises whenever any group of arm i.e. 

)3,2,1),CB;BA(( iiii =i  is in a fully stretched-out or folded-back configuration. The manipulator 
loses 1, 2, or 3 degrees of freedom according to configuration if one, two, or three arm groups 
are fully-stretched-out or folded-back. In the configurations, the changes of working elements 
(input – external arms) do not cause any change of movable platform. 

• Singularities of the second case (Direct Kinematic Singularities). 

Direct kinematic singularities occur when the determinant of Φq goes to zero. The robot 
loses controllability in certain configuration when the directions of arms 3,2,1,CB ii =i  intersect 
in one point of movable platform (e.g. Fig. 6: ψ = -54.2°). In the point, the platform can slightly 
rotate in spite of locked drives, i.e. it has one degree of freedom. Or the different configuration 
appears, when directions of arms 3,2,1,CB ii =i  are parallel to one another. In this configuration, 
the movable platform can perform infinitesimal translations perpendicular to the parallel arms. 

• Singularities of the third case (Combined Singularities). 

A combined singularity occurs when the both determinants Φz and Φq equal to zero. 
The case is caused by dependence of structural relations (geometrical constrains). 
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Fig. 6. Comparison of determinant values for different angles of movable platform, 
determinants Φz,  Φq  and their combinations (position xC1 = 0.4 m, yC1 = 0.4 m). 
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6. Conclusions 
The paper deals with the analysis and simple classification of the singularities in workspace 
of one prototype of the planar parallel robot. It describes obtaining the kinematic relations 
(geometrical constrains) and shows their use just in investigating the problem of singularities. 
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