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Summary : Properties of fluid film bearings are significantly influenced by the shape of the cross 
section of the holes in the bearing shells. In computational models they are usually incorporated 
by means of nonlinear force couplings. To determine components of the hydraulical forces it is 
necessary to solve a Reynolds' equation to obtain a pressure function that describes a pressure 
distribution in the oil layer. In the case of short bearings the pressure function can be expressed in 
a closed form.  If at some location in the bearing gap the pressure drops below a certain limit, a 
cavitation takes place. Accommodation of this phenomenon in the computational procedure 
assumes that pressure of the medium in cavitated areas remains approximately constant. 
Components of the bearing forces are then calculated by means of integration of the pressure 
distribution around the circumference of the bearings. The considered model rotor systems are 
able to cover all significant properties of the real ones. Their steady state response on excitation 
produced by centrifugal forces due to unbalance of the rotating parts can be determined for a 
certain class of problems by application of a trigonometric collocation method. To perform 
stability and bifurcation analysis a perturbation technique based on utilization of a Floquet theory 
has been used. Principal steps of this procedure consist in setting up a transition matrix over the 
span of time of one period and in calculation of its eigenvalues. 
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1. INTRODUCTION 
 Vibration of rotors working in industrial enterprises can be considerably attenuated if 
they are coupled with the stationary part through fluid film bearings. On the other hand 
incorrect design of these constraint elements can produce operating conditions that are 
undesirable from the point of view of a limit state of deformation or of a control. 

 Properties of fluid film bearings strongly depend on the shape of the cross section of 
the hole in the bearing shell. Circular bearings especially if they are lightly loaded are 
prone to produce self-excited vibration known as oil-whirl and oil-whip which is 
marked for large amplitudes. The stability limit ( from the point of view of the speed of 
the rotor rotation ) can be significantly increased if the bearings of non-circular cross 
section are applied ( e.g. elliptical, lemon, with pressure dams, etc. ). 
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2. CALCULATION OF THE BEARING FORCES 
 Hydrodynamical bearings are usually incorporated into the computational models by 
means of nonlinear force couplings. To determine components of the hydraulical force 
through which the layer of lubricant acts on the rotor journal and bearing shell it is 
necessary to know a pressure function that describes a pressure distribution in the 

bearing gap. After introduction of several 
assumptions given e.g. in [ 7 ] : (i) the bearing 
surfaces are absolutely smooth and rigid, (ii) the 
cross section in the bearing shell is constant in the 
axial direction, (iii) the oil film thickness is small 
compared to the journal radius, (iv) the lubricant is 
incompresible Newtonian liquid of constant viscosity 
in the whole oil film that perfectly adheres to the 
bearing surfaces (v) the flow is laminar, (vi) the 
pressure of the lubricant is constant in the radial 
direction and (vii) the velocity gradient in the radial 
direction is large in relation to those in the tangential 
and axial ones calculation of the pressure function 
arrives at solving a Reynolds‘ equation 
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ϕ, Z - circumferential, axial coordinates ( Fig.1 ), 
e, γ - eccentricity of the rotor journal centre, position angle of the line of centres 

( Fig.1 ), 
h0, h - width of the gap at centric, eccentric position of the journal, 
R, η, t - radius of the rotor journal, oil dynamical viscosity, time, 
p - pressure, pressure function, 
u1, u2  - circumferential velocity of the bearing housing and rotor journal surfaces, 
γ&  - derivative of the position angle of the line of centres with respect to time, 
e&  - derivative of the eccentricity with respect to time. 

 If geometry and design parameters of a bearing make possible to consider it as short 
( length to diameter ratio less than approximately 0.25, insufficient sealing at the 
bearing faces ), then the pressure gradient in the axial direction is considerably greater 
than those in the circumferential one and therefore the first term on the left hand side of 
(1) can be neglected 

    Fig.1 Scheme of the bearing 



 

 

( )
t
h12

uu
h

R
6huu

R
6

Z
ph

Z
21

21
3

∂
∂η+








∂ϕ
∂

+
∂ϕ
∂η+

∂ϕ
∂+η=








∂
∂

∂
∂  (5) 

 Solution of the Reynolds' equation (5) utilizing two additional pressure conditions 
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pa - pressure of the outer environment at the bearing faces , 
L - length of the bearing, 

can be expressed in a closed form 
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 Usually it is accepted for the boundary conditions of the velocity component of the 
oil flow in the circumferential direction [7] 

0u1 =  (10) 

Ω= .Ru 2  (11) 

Ω - angular speed of the rotor rotation, 

but in some special cases ( low speed rotors, large velocities of the rotor and stationary 
part vibration, etc. ) they can be expressed by more accurate relationships. 

 If pressure of the oil in the bearing gap drops under a certain limit, a cavitation takes 
place. It is a complex phenomenon when air is sucked into the bearing, the oil starts to 
boil, and gasses dissolved in it are liberated. In cavitated regions a Reynolds' equation 
does not hold and the flow is governed by different rules. A cavitation has been studied 
by many researchers. Zeidan and Vance [8], [9] revealed five regimes that can occur 
during the bearing operation. Results of their work shows that pressure of the medium 
in cavitated areas remains approximately constant. That's why the pressure distribution 
in the oil layer can be describe by the following relationships 

pp t =  for cavpp ≥   (12) 

cavt pp =  for cavpp <   (13) 

pt  - pressure distribution in the bearing gap, 
pcav  - pressure of the medium in a cavitated region. 

 Assuming that 

cava pp ≥   (14) 

the cavitation takes place if magnitude of the pressure function in the middle of the 
bearing length drops under a limit value of  pcav . Coordinates Zcav of the extent of the 
cavitation area in the axial direction result from solving the equation 
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 From (8) it is evident that the pressure profile in the axial direction is parabolic. Its 
mean value pm is defined as follows 
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 After performing the integration making use of relationships (12) and (13) it holds 
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 Components of the hydraulical force through which the oil film acts on the rotor 
journal are calculated by integration of the mean pressure value pm around the 
circumference of the bearing 
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Fy, Fz - y, z components of the hydraulical force. 

3. STEADY-STATE RESPONSE OF A ROTOR SYSTEM ON 
PERIODIC EXCITATION 

 An important instrument for investigation of rotor systems is a computer modelling 
method. The model rotors are assumed to have the following properties : (i) the shaft is 
represented by a beam-like body that is discretized into finite elements, (ii) the 
stationary part is flexible, (iii) the discs are axisymmetric rigid bodies, (iv) inertia and 
gyroscopic effects of the rotating parts are taken into account, (v) material damping of 
the shaft is viscous, other kinds of damping ( except the bearings ) are linear, (vi) the 
bearings are hydrodynamical, (vii) the rotor rotates at constant angular speed and 
(viii) is loaded by forces and kinematic effects of constant and periodical time histories. 

 Lateral vibration of such rotor systems is described by the equation of motion  

),()..()...(. HVACSHV xxfffxKKxGKBxM &&&& ++=Ω++Ω+η++  (21) 

and by relationships for boundary conditions 

)t(BCBC xx =  (22) 

M, G, K - mass, gyroscopic, stiffness matrices of the rotor system, 
B, KC - ( external ) damping, circulation matrices of the rotor system, 
KSH - stiffness matrix of the shaft, 
fA, fV, fH - vectors of applied, constraint, hydraulical forces acting on the rotor system, 



 

 

xxx &&& ,,  - vectors of generalized displacements, velocities, accelerations of the rotor 
  system, 
xBC - vector of boundary conditions, 
ηV - coefficient of viscous damping ( material of the shaft ). 

 Solution of the equation of motion (21) after dying out the initial transient 
component can be obtained for a certain class of problems by application of a 
trigonometric collocation method. This approach assumes that : (i) the steady-state 
vibration is a periodic function of time, (ii) its preriod T is a real multiple of the period 
of excitation and (iii) the response can be approximated by a finite number of terms of a 
Fourier series. 

 To be satisfied the boundary conditions (22) the equation of motion (21) is 
transformed into the following  form 

byAyAyA =++ ... 012 &&&   (23) 

A2, A1, A0, y, y& , y&& and b are obtained from matrices ∗
2A , ∗

1A , ∗
0A  and vectors x , x& , x&& , 

b* by omitting their rows and columns that correspond to the degrees of freedom to 
which the boundary conditions are assigned 
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 Approximation of the modified solution y is expressed by relationship (28) 
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NH  - number of the considered harmonical terms, 
y0, ycj, ysj  - vectors of Fourier coefficients ( j = 1, 2, ... , NH ). 

 A trigonometric collocation method requires to specify NC collocation points 
( collocation instants of time tk ) e.g. 

)1k(
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C
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 Substitution of the assumed solution (28) and its first and second derivatives with 
respect to time into the modified equation of motion (23) for all collocation points of 
time tk arrives at a set of nonlinear algebraic equations.  
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which be also expressed in a matrix form 

)(. grgS =  (31) 

S - coefficient matrix, 
r - right-hand side vector, 
g - vector of unknowns. 

 The  unknowns are Fourier coefficients of all displacements of the rotor system to 
which no boundary conditions are prescribed. 

4. STABILITY INVESTIGATION OF THE PERIODIC VIBRATION 
 For stability and bifurcation analysis of a rotor system periodically excited by 
centrifugal forces of unbalanced rotating parts a perturbation technique has been 
adopted. The steady-state component of the forced vibration is slightly disturbed at the 
beginning of the investigated period but time histories of the applied forces and the 
boundary conditions must remain unchanged. To determine bearing forces 
corresponding to the disturbed motion the vector of hydraulical forces fH is expanded 
into a Taylor series in the neighbourhood of the current state 
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DB , DK - square matrices of partial derivatives, 
∆x, x&∆ , x&&∆  - vectors of deviations of displacements, velocities and accelerations of the 

disturbed rotor system. 

 Substruction of the equation of motion of the undisturbed vibration from the one of 
the disturbed motion and a series of consequent manipulations taking into account only 
the linear portion of the Taylor series (32) and the boundary conditions arrives at a set 
of linear differential equations of the second order describing time history of deviations 
of displacements of the disturbed motion 

oyAyAyA =∆+∆+∆ ... 012 &&&  (35) 

which is further transformed into a state space 
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A2, A1, A0, y∆ , y&∆ and y&&∆  are determined from matrices ∗
2A , ∗

1A , ∗
0A  and vectors 

x∆ , x&∆ , x&&∆ by omitting appropriate rows and columns that are related to the degrees of 
freedom to which the boundary conditions are imposed 
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I, O, o - identity matrix, zero matrix, zero vector. 

 Because of DB and DK the coefficient matrix in (36) is a periodic function of time. 
That’s why stability judgement of the rotor system vibration can be carried out by 
means of a Floquet theory. Division of the period of T into N time subintervals ∆t 
makes possible to express the transtion matrix between points of time 0 and T as a 
product of N partial transition matrices  
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H(t2,t1) - transtition matrix between instants of time t1 and t2 . 

 Employing kinematic relationships of a Newmark method a relation between 
kinematic quantities corresponding to times t and t+∆t can be derived. The square 
matrix in it represents a partial transition matrix  
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 Vibration of the rotor system is stable if magnitudes of all eigenvalues of the 
transition matrix H are less that 1. If the leading eigenvalue whose magnitude is greater 
than 1 is real and negative, the periodic solution becomes unstable and another solution 
winding twice per the driving cycle appears ( a period doubling bifurcation ). A pair of 
complex-conjugate leading eigenvalues is a mark of a secondary Hopf bifurcation. Then 
the resulting motion is composed of two fundamental harmonical components whose 
frequencies are irrationally ( quasi-periodic vibration ) or rationally ( subharmonic 
vibration ) related. Real and positive leading eigenvalue greater than 1 is referred to a 
saddle-node instability. Any disturbance will cause the rotor to jump to a stable cycle 
limit of the same type. 

5. EXAMPLE 
 The investigated rotor system ( Fig. 2 ) consists of a shaft ( SH ) and of two discs 
( D1, D2 ) attached to its overhanging end. The shaft is coupled with a rigid foundation 
plate ( FP ) through two hydrodynamical bearings ( B1, B2 - oil dynamical viscosity 
0.006 Pa.s, pressure in cavitated areas -10 kPa ) whose shells consist of two circular 
segments mutually shifted in the horizontal direction ( radius 40 mm, length 20 mm, 
clearance width 0.2 mm, shift of the segments 0.05 mm ).  

 

 



 

 

 The rotor rotates at constant angular speed 
( 380 rad/s ) and is loaded by its weight. In 
addition the system is excited by the discs 
unbalance ( eccentricities 0.15 mm ). The task was 
to analyze stability of the steady-state response. 

 In the computational model the shaft was 
represented by a beam-like body that was 
discretized into five finite elements. The steady-
state component of the response was 
approximated by one absolute and by the first 12 
harmonical terms of a Fourier series. It was 
assumed that period of the vibration is equal to the 
period of excitation ( the period of rotation ). For 
the purpose of calculation of the transition matrix 
the period was divided into 500 time subintervals. 
Some of the results are given in Figs. 3 - 7. 

  In Fig.3 there are trajectories of the discs D1 and D2 centres. If the discs find 
themselves in some limited space, then these results are important for judgement of the 
rotor system from the point of view of a limit state of deformation. Trajectories of the 
rotor journal centres in bearings B1 and B2 are drawn in Fig.4 and time histories of their 
eccentricities in Fig.6. Its evident that the journals move inside the holes of the bearing 
shells and that no impacts between the rotor and the stationary part take place. 

 
 
 
 
 
 
 
 
 
 
 
 
 Fig.3  Trajectories of the discs D1 and D2 centres 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.4  Trajectories of the rotor journal centres in bearings B1 and B2 

    Fig.2  Scheme of the investigated   
              rotor system 
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 Fig.5 shows images of the Fourier transformation of z-displacements of the rotor 
journal centres in bearings B1 and B2.  

 Distribution of eigenvalues of the transition matrix set up over the span of time of 
one period in a Gauss plane are drawn in Fig.7. All of them are situated inside a unit 
circle and it means that the investigated vibration is periodic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5  Fourier transformation ( z-displacements of the rotor journal centres in B1 and B2 ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.6 Eccentricities of the rotor journal centres Fig.7 Eigenvalues of the transition matrix 

7. CONCLUSIONS 
 The described numerical approach represents a comperhensive method for stability 
investigation of rotors supported by short fluid film bearings of non-circular cross 
section. The attention is paid especially to determination of the pressure distribution in 
the bearing gap. The proposed procedure makes possible to accommodate influence of 
the rotor journal and bearing shell vibration on the boundary conditions related to the 
flow velocity components and to include rupture of the oil film into the computational 
model. The pressure function can be expressed in a closed form which contributes to 
speeding up the analysis. 

 The carried out computer simulations brought a some practical experience that can 
be briefly summarized. 

• A trigonometric collocation method makes possible to find a steady-state solution 
only if those is a periodic function of time. 
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• The most difficult step of its application consists in solving a set of nonlinear 
algebraic equations. For this purpose a Newton-Raphson and modified Newton-
Raphson methods were applied. 

• Iteration proces of these numerical procedures can stop to converge if (i) the 
response after dying out the initial transient component of the vibration is not a 
periodic function of time ( e.g. it is chaotic ), (ii) its period is not estimated correctly, 
(iii) the load increment is too large, (iv) during the computational process a 
bifurcation takes place or if (v) the pressure function is not calculated with enough 
accuracy. 

• Advantage of the trigonometric collocation method is that it also enables to find an 
unstable solution at which one cannot arrive by application of a direct integration of 
the equation of motion. 

• Setting up a transition matrix by means of the described procedure requires to divide 
period of the response into a large number of short time subintervals. 

 As a conclusion it can be said that investigation of rotors supported by 
hydrodynamical bearings of non-circular cross section is an important but also rather 
complicated technical problem. To its solution a computer modelling method can be 
applied. The computer simulations are valuable especially if they are performed for a 
series of running conditions or design parameters of the rotor system. 
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